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ABSTRACT

The behavior of digital cross-correiation algorithms
as appliied to image matching problems is examined in terms
0T the relationship between measureable image properties and
algorithm characteristics. Statisticail image gquaiity meas-
ires are developed which could be employed in a poreprocessor
to predict the performance of automatic stereo-compilation

equipment. ne measures include a quantity derived freom the
Cramer-Rao icwer bound on the variance of any unbiased
parameter estimator, various contrast measures such as vari-
ance, contrast modulation, and median absolute deviaticn,
and & stationarity detector related to the variance gracient.

nesz measures are based on image and correlator modeis

whicn describe the behavior of correlation processors under

(@]
(@]

nditions ¢f low image contrast or signai-to-noise ratio,
gecmetric aistortion, and image non-stationarity. Computer
simuiazions using synthetic imagery were performed to ver-

-

ify tne various mocels, and indicate the pcotential rtor the
use ¢of image gquality measures in the predicting of corre-
Tation behavior. Implications of the modeis in terms of

corralaticn processor design ana implementation are dis-

cussed.
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CHAPTER 1

INTRODUCTION

In many image processing applications, 1t is neces-
sary to spatizlly register two or more images of an object
Tield obtained from different sensors or taken from the sane
sensor at different times or locations. The registration of

two mages consists of translating them relative to ¢ne an-

other so trnzt they exactly overlay each other. The transia-
tian {ana possibly rotation) required to acnieve registra-

tion provides information concerning the relatiive positions
07 tne sensors and points in the object fieild. Applications

of image registration are numercus and incliude such diverse

areas as guidance of unmanned vehicles, Cnange detection,
target acqguisition and tracking, and the procucticn oF todo-
granshic¢ maps. 1t is primarity the latter topic that is ad-

ed

€1
-~

es

(%]

rein aithough many of the concepts and prchiems

o)
[t

ot
(@)

be discussad are aiso found in other appliceations.

(%)

A problem of consideratlie interest witnin tne car-
tographic community is that of mechanized "stereo-viewing",
that is, autcmatically locating identical {(conjugate) points
on twO0 Gr more aerial onotographs. The result of this in-
tarest nas 52en “ne cevelopment o7 several automated siereg-

1

compilation systems including tne Universal Automaztic Map




Compilation Equipment (UNAMACE)} [Thompson 1966}, the AS-
11B-X Stereo Mapper (Brumm, et al. 1976], the Gestalt Photo
Mapper G°MII ([Crawley 1974], and the Heterodyne Optical
Correlator (HOC) [Balasubramanian 1976]. The principal

advantage of automates sterec-systems are their speed,

[

economy and precisisn {altncujn not necessarily accuracy).

ct

(&)

DQifferent human cper r< using a stereg-piotter will not

(s8]

[

achieve the same degree of repeatability as will the auto-

mated system. The human operator, nowever, is far more re-

liable. The limitation in machine reliability is a function
of the variability of terrain conditions over which it must
operate. Tne basic function of the autcmatic stereo-
compiler is to compare two nearly identical images (around
corresponding conjugate points) and determine the position
resulting in maximum similarity. The machine, however, is
unable tc recognize objects or shapes. Wnhen the machine 1is
confronted with images that differ considerably in appear-
ance, it does not functiion properly. As we will see, under
conditions of steep terrain, the two images can differ sig-
nificantly. I[f there are points in one image that are not
vis5ible in the other image, the resuits of the matching are,
in generai, unpredictable. The numan operator, on the other
hand, can recognize objects and shapes even if tney differ
in scale or aspect. Most present Zay automatic compilers
incorporate terrain slope correction features whicn allow

for on-line geometric correction of the distortion produced

e




by terrain relief. 7Tnis added capability, however, reduces
the overall system speed.

The automatic compiler is also less reliable in re-
gions of imagery devoid of contrast, particularly in tne
presence of noise which tends to increase the difference be-
tween conjugate regions. Regardless of the sources of image
differences, the machine ‘occasionally "gets lost". That is,
it will come to a point where it is unable to locate identi-
cal corresponding imagery. When this occurs, the machine
will search until it is far off track. Finally an alarm is
sounded to notify an operator of its condition. Because of
the occurence of these conditions, the systems are only semi-
automatic at best.

Sterec-compilation is accomplished by cross-
correlation. The pictorial information is first converted
into electrical signals via a scanning operation. The re-
sulting signals (either analog or digital) are tnen com-
pared in a correlator circuit or computer. The translation,
or parallax, between the images is determined by the loca-
tion of the peax of the cross-correlation function indicat-
ing maximum similarity between image segments. Performance
for image registration is measured by the accuracy with
which tne offset of the peak ¢f the correlation fTunctian
matches the true parallax created by topcgranhic relief and

sensor orientation.




The term "correlation” is a generic term that in-

c¢ludes a number of different algorithms and technigues
which will be described in Chapter 2. <Each of the tech-
niques, however, generates a correlation function. An
example of such a function, c(%), is shown in Figure 1-1a.

‘ Without loss of generality, it is assumed that the correct
peak position is at the origin of the ¢-axis. Due to &

¢ variety o7 noise sources to be described in Chapter 4, there
are statistical fluctuations in the measured correlation

functicon, c¢{Z), which are indicated by the dashed lines in

‘ Figure 1-1. These fluctuations can produce two distinctiy
different types of correlation errors. An error occurring

' even though the correct Tobe of the correlation function ig

| chosen is called a "local registration error" as shown in
Figure 1-1b. An error resulting from seiecting an incorrect

l lobe is ccmmonly termed a "false acquisition error" as shown
in Figure i-1¢c. The conditions under which these 2arrors
occur depend in part on the particular correlation tech-

| nique. [t is generally the case, however, that locail regi-

| stration errors occur in regicns producing broad correlation
functions wnile false acquisition errors occur in regions
producing relatively narrow correlation functions.

Mo matter what the actual physics of tne correlation

process, the correlation calculations are subject to a cer-
tain amount of error, and the errors result in inaccurate

determination of parallax values. Frequently these errors
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are catastropnhic and iead to terrain elevation vialues that
are impossible cor inconsistent. Even when the errcrs are
not catastrophic, i+ is of the greatest practicai utility o
know the magnitude 0f errors that are asscciated witn e
particuiar region of an image. The degre2 to wniCh & par-
ticular region is "error prone' depends on the physical
properties of the terrain, the correlation tecnnique, tne
jmplementation of the technique, and the properties of the
image function as well as the various contaminating noise
sources. Knowledge of these relationsnips wculld alticw the
development of sterec-compilation pre-processors t0 detecll
image regicns that are defective {error prone) in the sense
that tne probability of correct conjugate acguisition is in-
adequate. .With sucn 2 "defect map", the correlation proces-
sor coulc operate adaptively within tne faliowing opticns:
(a; Reject *he region and indicate the nes:z
for new data acquisition,
(b) Reject the region and indicate that tne
region can dDe successfully processed by
human operators,

{c) Switch to a different correiztion telh-

YY)

nique known to be less sensitive to tne
particular defect,

(d) Enhance the region in some way %o improve
the probability of correct conjugate ac-

quisition,

|




(e) Accept the region as nhaving sufficient

quality to process as usual.

The ability to pre-process stered images in this
manner would allow improved resource allocation (numan vs.
machine) and thus improve the overall throughput rate and :
econcmv of the operation.
it is the primary purpose of this research effort
to examine the behavior of digital image matching technigues
in terms of the relationship between measurable image proper-
ties and known aigorithm characteristics and to develop image
qualisy measures wnich can be empicyed to predict the per-
formancs of automatic s+terec-compilation equipment. In the
remainder <f tnis chapter we briefly review the basic con-

cepts avclved in stereg-compilation.

Stereo-Compilation Caoncepts

Figure 1-2 shows the gecmetry assumed in the analy-
sis. 7o simpiify notation, the functional relationships are
definec in cne dimensicn only. Extensicon to two dimensions
is direct anc does not alter any of the anaiysis. On the
ground tner2 are two quanticies of interest: the elevation,
et k,, and 3 corresponding intensity pattern, I(X), which is
the result ¢f light reflected from the features of the land.
The camera is located at an altitude 0of H above reference
elevaticn and the focal plane of the camera is assumed to te

paraliel to the reference plane. The camera has focal length

U
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-

£ and the translation between images is the air base 3. TWo

coordinate variables, x, and Ko are ascribed to the two

1
image planes. The geometry in Figure 1-2 is a so-called
“geometric positive"; the true image lies behind the focal
point of the camera and an inverted (geometric negative)
image is formed. By reflecting the image through the focal
point a geometric positive lying in front of the camera is
constructed and has the advantage of having the same sense
of coordinate algebraic signs as the ground cocrdinate sys-
tem.

In practice, the acquisition of stereo-photcgraphs
rarely results in images which are precisely vertical. The
rectification processes which correct for differences in
altitude and orientation of the sensor stations are the do-
main of photogrammetry [Thompson 1968) and no further con-
sideration is given them here.

[t is assumed, <then, that the following reguirements
are fulfilled in order to obtein "perfect" photographs.

(aj The optical axis of the camera lens is

exactly vertical at the instant of
gxposure.

(b) There is no forward movement of the
aircraft relative to the ground during
the exposure time.

(c) The camera is free of distortion.

(d) Atmospneric conditions are idea..




10
[t is obvious that there ic no practical possibility of reg-
ularly meeting these requirements. rfortunately, photogram-
metrists have developed corrective procedures which relegate
these effects as mianor when compared to the contaminating
effects discussed in Chapter 2.

Given the gecmetry of Figure 1-2, the coordinates X4
and X5 of the two images of a single ground point located at
a distance X from the nadir point of image 1 can be deter-
mined by applying the rules of similar triangies. From
Figure 1-2 it is clear that

T F_%TT P %2 T HX--eBxZ ' e
The accumulation of image points forms the intensity pat-
terns observed in tne image planes. The two intensity (or

density, patterns, g](x]) and gz(x ), correspond to the pro-

2
Jection of tne intensity pattern I(A) into the two image
planes. iAssuming that the reflectance of *the object field
is indepencent of the camera station, the procedure for con-
structing an intensity pattern in the image from an inten-
sity pattern an the ground can be characterized by the ex-

Iressiong

TxplH - e(x>>]
g9,(xy) = x{ 5 (1-2a)
X, (4 - e(X))]
g,(x,) = I[B . 2 J (1-2b)

where o and X, 2re the projections of point X.
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Equation (1-1) can also be solved for e(X):

e(X) = H - —3L (1-3)

which shows that the elevation information is encoded in
Equation (1-1) in the form of the difference in coordinates
(parallax) of the conjugate points Xq and Xg - The goal of
stereo-compilation systems, then, is to accurately identify
conjugate points.

The effects of a parallax error on the computed
ground coordinates is shown in Figure 1-3. In a digital
system, the images are sampled to produce discrete resolu-
tion elements (pixels). Assuming such a system, we substi-
tute for the parallax in (1-3), X7 = X4 the parallax in
terms of the number of pixels

Xy = X, = jax - Jax = (i - j)ax (1-4)

where &x is the sampling distance. From (1-3),
e(X) = H - —2& . (1-5)
If the parailax is in error by ¢ pixels, tnhe elevation ar-

ror is given by

fa = - Bie
S { G Ry R C R D U (1-6)

[t is usually the case that the parallax errors are small

with respect to the actual magnijtude of the parallax, i.e.,
(i - j)>><. Thus (1-5) and (1-6) can be combined to give

2
-3x[H - e{X)]
B(’_ £ . (]'7)

de

-]
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13
fquation (1-7) specifies the elevation resolution limit of

the aigizal stereg-conpiler. That 1s, the minimum detect-

able change in elevation is given by

L
n

Ae

. 2
el _ Ax[H - e(X)]
min ,eﬁ BL ' (1-8)

While the parameters H, B, and £ can be chosen during the
data acgquisition stage, the only parameter available to the
processor is Ax, the sampling interval. Some image regis-
tration algorithms, however, attempt to improve on this res-
oiution limit by interpolating the sampled correlation
function in the vicinity of the peak [Pearson, et al. 1977].
This procedure is generally avoided in digital stereo-
compiiation systems due to the increased computaticnal ioad.
Correlation errors also result in ground position errors
denoted by 3X in Figure 1-3. Applying similar triangles to
the geometry 0f Figure 1-3 reveais that

R e (1-9)

Because of the two dimensional terrain error, the perform-
ance of stereg-compilation systems is expressed in terms of
the parailax error.

Most of the stereo-compilation systems currently in
use were designed primarily for producing contour and pro-
file outputs. Recently, however, there nas been an increas-
ing need for topograpnic data in the form of digital gria-
point elevaticens. Although many of the existing systems can

be used to obtain such data, the AS-11B-X stereo-mapper was

----------llllllllllllllllllll;llllllllli
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developed specifically for this purpose {Brumm, et al. 1978].
As a result of improved image scanning techniques and highly
parallel high speed digital processes, the AS-11B6-X is cap-
able of compilation speeds on the order c¢f 10 to 50 times
faster than for conventional systems with comparable accu-
racy. One of the features of the AS-113-X which contributes
to the increase in throughput rate is that image-intensity
{or density) is scanned and measured on each photograph
along corresponaing epipolar lines. Epipolar lines are the
lines of intersection between the photographs and the set of
epipolar planes defined by the focal points of the two
camera stations as shcwn in Figure 1-4. With such a scan-
ning tecnnique, the correlation function need only be one-
dimensional since conjugate points 1ie on corresponding
epipolar lines. Any residual parallax in the direction
peroencicular to the epipolar lines is considered to be

negiigible [Brumm, 2t al. 19767].

Thesis Qutline

In Cnapter Z, we present a number of correlation
tecnniques tnat are commonly emplioyed in image matching
aopplications and indicate the theoretical justification for

their use. it is shown that the maximum iikelihcod similar-

~

ity measure %takes the form of covariance (matched filtery),

ncrmalized covariance, or least squares, depending on the

a-priaori assumptions aboui %“he image formation model.
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The Cramer-Rao lower bound on the accuracy of any
unbiased estimator has been derived {Yan Trees 1268 in the
context of radar target range determination by estimation of
signal round-trip time delay. A similar bound has been de-
veloped [Knapp and Carter 1375] in the context of estimat-
ing time delay between received signals at two spatialiy
separated sensors used in passive sonar systems. In Chap-
ter 3, these results are presented and compared and their
application to the prediction of errors in sterec-compilation
is discussed. The form of the bound derived by Knapp and
Carter {1976] is shown to apply to the image formation model
assumed and is thus considered as an image quality measure.

It is impossible, excent under severely restrictive
conditions, to derive a general expressicn for the probabii-
ity of a false acquicsition. Attempting such a derivation,
however, leads to an image quality measure whicn is similar

to the "figure of merit" ascribed to correlator performance

[ d

by Webber and Jelashmit [1974a]. This figure of merit is
shown to be a function of both image area and local signal-
to-noise ratio.

In order to emplioy the figure of merit as an image
quality measure, it is necessary to determine the correlator
output signal-to-noise ratio. In Chapter 4, the covarianca
function is analyzecd in detail to determine the degree to

which sensor noise, quantization noise, "self" noise, and

machine noise corrupt correlator performance. Models for

|
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computer round-off errors are developed for both fixed point
and floating point correlation processors. The expressions
developed for the purpose of predicting correlator perform-
ance all require the assumption of input data (image) sta-
tionarity. <Chapter & concludes with a discussion of the

4 effects of input data non-stationarity on correlator perfcrm-

ance. Two schemes for detecting such regions are presented

and the conditions under which such regions are considered
"defective" are discussed. It is shown that the covariance
processor is particularly susceptible to data non-stationarity.

i In Chapter 5 we consider the effects of terrain vari-
ability on correlator performance and develop a model for
"relief distortion" which is described by tne function re-

' auired to map an image region onto its conjugate. Under
simplifying assumptions, this mapping is shown to be a spa-

| tial contraction or expansion in the direction paraliel %o
epipolar lines. The distortion modelled by this affine
transformation nas bteen analyzed in detail by Mostafavi and
Smith [1978a, 13738b]. We review these results and discuss
the conditions under wnich they apply to the stereo-
compilation problem. Of particular interest here, however,
is the degree to which the effects of distortion on corre-
lation accuracy can be predicted. To this end, an "image

+

overlay quality" measure is developed in order to predict
the statistics of a parameter used to describe distortion

within a region of imagery. Due to the assumption required
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to make the problem tractable and the computational com-
plexity of the resulting procedure, it is concluded that
pre-processing alone is unlikely to provide all the needed
information for accurate error prediction but that a com-
bination of pre-processing and on-line (i.e., during stereo-
compilation) algorithms has tne potential for detecting
problem regions and increasing the overall system throughput
rate.

§ Chapter 6 is concerned with the design and implemen-

tation of computer algorithms to assess the utility of the

' image quality measures develcped in previous sections 1in

terms of the degree to which image "quality" is indicative

of the correlation behavior. Here we look at the image

j quality measures based on the Cramer-Rao bound and false
acquisition probabilities as well as a number of other image
features based on contrast measures such as varjance and
contrast mcduiation which appear to have potential for pre-
dicting error prone imagery. Results indicate that a
measure Hasec on the Talse acguisition probability appears
to held the greatest promise for predicting correlation
behavior aithougn, with few exceptions, tne quality meas-
ures are remarkably similar in detection perfaormance.

One dimensional correlation simulations in the

presence of relief distortion indicate that extreme relief
can, indeed, be a source ¢of correlaticon errcor. Although

some sterec-compilation systems correct for gecmetric

N R
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distorticns described by affine transformations, we show
that computational savings may be gained by performing these
corrections only under certain conditions which can be par-
tially specified in a pre-processing mode.

Finally, in Chapter 7, the implementation, both
cptical and digital, of promising pre-nrocessing algorithms
is considered. Also considered are image enhancement pro-
cedures which can be used to reduce the effects of noise on
correlation behavior. Initial experiments indicate that
these noise suppressionoperations can significantly imprcve

correiation accuracy.




CHAPTER 2
CORRELATION TECHNIQUES

Numerous correlation techniques, both analog and
digital, have been proposed for the purpose of image regi-
{ stration. None of these is equivalent to stereo-viewing as
accomplished by human observers, Owing to his adaptability,
, the human observer is far superior. The interest in develop-

ing automatic systems, however, has led to a variety of com-

putational procedures. Some of these procedures have a
l sound theoretical basis whereas others are at least partly
ad hoc. In this chapter, we present the theoretical frame-
' work for some of the more common digital procedures and
' briefly discuss the rational behind the development of the

ad hoc technigues.

Correlation Geometry and MNotation

Let two images, S the search region and R the match
window, be defined as in Figure 2-1. S is an L x K array
of digital picture elements {pixels) and R is an M x N
array such that M < L and N < K. It is assumed that enough
a-priori information is known about the search and match
windows so that L, X, M, and N may be selected with the

gquarantee that, at registration, a complete subimage is

20
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contained within the searcn area. In stereo-compilation
systems, there are two mechanisms for establishing such a
guarantee. In a "non-tracking" correlator, the search
limits can be set by a-priori knowledge of the maximum and
minimum elevation over the region 0f interest as indicated
in Figure 2-2. In a tracking correlator, however, the
search can be reduced by predicting the location of the
correlation peak based on previously computed parallax
vilues and ccmputing the correlation function at several
positions on either side of the predicted location. Because
of the increased throughput rate achievable by reduction in
search extent, the latter mode is commonly employed in
present stereo-compilers. As mentioned previously, however,
this mode has the disadvantage of veing unable, in general,
L0 recover from a "lost" condition without aid from an oper-
ator,

The various correlation procedures search over the
allowed range of reference points to find a point which in-
dicates a subimage that is most similar to the given window.
In some appiications (e.g., stereo-compilation with epipolar
scanning), the search is one-dimensional (M = L in Figure
2-1). 7o simplify notation we will assume that the correla-
tion functions are one-dimensionail. The extension to two-
dimensional searches is straighforward. Furthermore, we
will denote the match window 2 by defining r to be a vector

consisting of the raster scanned elements of R, that is

S
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The varijous subimages of the search window will be denoted
in a similar manner by sk,k = 1,...,T where the superscript

indicates the Tocation of the subimage and T is the number
of allowed reference points (taps]).

In general, one cannot expect any of the subimages
sk to be identical to the match window r. Assuming the
jdeal image acquisiticn scenario described in Chapter 1, the
primary sources of the difference between r and the "correct"
subimage, gc, are film-grain noise (or shot noise/photon
ncise in a photoelectric sensor), scanning noise, and dis-
tortion due to terrain relief. Film-grain noise is a direct
consequence of image acquisition, sensing and recording; it
is a random quantity injected into both images. Although
this type of noise is weakly signai dependent [Andrews and
Hunt 1977), it is common procedure to characterize its be- ﬁ

havior by the zero mean Gaussian probability density func-

tion (pdf):

) ) . . .

There is a correlator output associated with each reference
point or relative location k. The term "tap" historically 4
refers to the wire tap on a delay-line correlator.

e
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no

(2-1)

o) —
!

exp |-
n
{t is also assumed that

uniform
Scanning noise will also be
relief are nct so easily

Wwe assume that the effects

In Chapter 5, we discuss tne con-
valid.
image intensity or

via the projection relationship

for tne effects of film-grain noise

noise) is given by
r=g9rn

(2-2)
s =g+ s

i35 the noise seguence contaminating

~ -~

the match win-

dow and ng is the seguence contaminating the correct sub-
From {2-2) it is easily seen that 1
o ’
r = + N - . -
- -r s (2-3)
I'f we lump the noise terms together, i.e., replace
,Cs {23
by n~, then (2-2; becomes
r= s¢ st (2-4)
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¢ and sC are corre-

-~

Before proceeding, we note that n
lated through Equation (2-2). Since we do not know which of
the T subimages 1is §C, each subimage Ek must be tested. In
the following section, it is shown that some of the more

common correlation procedures are maximum likelihood parallax

estimates.

Maximum Likelihood Correlation Procedures

[f we consider r to be a signal obtained at the re-
ceiver end of a transmission channel, then the set of sub-
images {§k} can be viewed as the set of possible transmitted
messages. Given r, we wish to determine which transmitted

signal sk, k = 1,...,T most closely resembles r. The maxi-

mum likelihood (ML) processor selects the signal which maxi-

k)'

mizes the conditional pdf plir s’ As we will see, the form

0f the processar depends on the assumptions made abcut the

set of signals {sk} as well as the properties of the "trans-

-~

mission channel”. In order to generalize (2-2), we intro-

duce the parameters 3. and mc in such a way that

3
"
Y]
Ho
+
3

(2-3)

s =g +m_ +n
5 g ..

The parameter aC can be viewed as a scale factor in-

troducec to account for differences in image contrast and

me is a bias vectcr modelling possible differences in mean

~

density level. 4e will assume m. consists of identical

N S



elements of value m. Rewriting

(s¢ - m

= |“n
ro=ast - -ong)

C

The maximum likelihood problem can now be

in terms of the 7 hypotheses:
Hy o= agls -omy
_ 2
Hy 1 r = ay(s™ - my
- _ T
Hp o= agls -omg

Before proceeding with the determiration

we need to obtain appropriate expressions for 2,

k .
vectors r and s respectively.

spect to these elements gives

[f we estimate the ensemble

(2-5)

determine T s We denote by r and s? the i
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as in (2-3), we have

tn (2-6)

r

formulated

(2-7)

of the ML processor,

and m,. To

-k

i th elements of

the

Taking expec:tations with re-

m) (2-8)

means by computing the

sample averaje over the appropriate region, then
mesk . L7 (2-9)
a
k
and [2-7) becomes
- _ k -k
Hotr =1 =a(s" -5 n) o+on, (2-10)
To obtain a, we compute
- =L =20,k = . - v . \
2i{r-r) ;r-r);—ak;a\s -5 -n,) (s -3 "N tEingn (2-11)
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where orthogonality eliminates the cross terms on the right

hand side.

If the vectors,

K . .
r, s , etcetera consist of N

~

elements, then the expectations in (2-11) can be estimated

by computing sample variances over appropriate regions, i.e.,

- 2~.2 .02 ok =k, Lyt 20,0 2
Ngr —ak[NcS -ZEa\f =S ) ka+ﬂcn ]+A”n (2-12)
, .2 .2 A 2 . " s .
where Sps Tg s and on are sample variances and M is the

total number of elements

in the match window.

The remaining

expectations in (2-12) can be evaluated with the help of

ky~ 1
yn, }=—¢
k ay,

Ei(s

Thus (2-12) reduces to

-2
Iy

e

from which it follows that

For high quality stereo-pair imagery, it is usually

. 2 -
the case that p 779,

ratios of 30dB are typical).

and : >> =z

rq” V+E 7 - { e C=Ng 2
TR TR TN, T (2013
522 gt (2-14)
2 2
= - L (2-15)
s “n

2 ~ 2. .
o n signal-to-noise

Thus,

(r - 7) (r - F)

— — (2-16)
K3 (s% . 3%)

S DU




The problem of determining plr s ) i35 complicated by

the fact tnat the noise in [2-10) is signal dependent. Usefu]

. , . , k k
results are obtained, nowever, by assuming tnat s  and n  are

£

statistically independent so we proceec along this path for
the present. Under this assumption, {2-10) is rewritten as
. - - K —k k 17
M r s TRl s s e (2-17)
where
nk = n_ - a.n (2-18)
.r k.k

Since the only random quantity in (2-17) is nk {r and

sk are known samples of a random process), then it follows that

p(r}sk) = -——lﬂ——~exp[-%(r—?-a
)ZN

nK (2-13)

sk-gk))‘c'w(r-F-a

k( s q L k"k)l

k(373

(2=
where Cn = :2 I is the noise covariance matrix (I = identity

nk

. 2 P 2 2
s - £ \ ~ = —~

matrix, and from (2-18), 3k (1 + ak) 3

of the hypothesis, Hi’ to maximize (2-19) is known [%halen

Thne selection

13717, (Van Trees 196381 to be the hypothesis which maximizes

the quantity

(55 -39 (2-20) ‘

Here (r - r) {

5°) is simply the cross-covariance of r
<

with s° and (5" - s°) (s k)

- 5°) 1s the energy of subimage sk
I[f we make the a-priori assumption that S 1 for all k, then
the ML processor computas the guantity

I M (2-21)

. !
- K
Ck =2r - r) 5 -

! u))L
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and selects %ne nynothesis which maxinizes <o Since
{r = r)"(r - r} is indegendent ¢f the hypothesis we coulg
Just as well compute
- o TN . _‘1(\ ! K -K k "‘k\
o = ir-r){r-r) - 20r - ry{st - 5Ty s (5T - SNt 5T
. kK =k, .. — k k
= llr-r) - (s" -s )i tr =) - (57 - 5T (2-22)

and select tne hypothesis A, to minimize ¢ .- Thus, the
assumoition thas I 1 leads to the "smallest sum of squired
differences” odrocessor which selects the hypotnesis which
previies the best least-squares fit to r.

the assumption is also made that tne subimzge energy
is independent of position (or varies slowly with position)
then the ML processor reduces to the simple covariance func-

tion

[AV]
1

™)

(98]

~o-

“or tne most genera! case, &, # 1 Y k. Substituting

\

(2-1¢; dnte [2-23) gives

-~ ’

- L( —K -
o = 2(r - r)7lsT oS e o Fycie o P I Y
il -~ - ~ ~ -~ - - \ /
K
‘I ~ -~ - -
K ookyLok ok, 7
fis™ - 57 5™ -5
) i i ) {2-24]
Sliminating zuaniities that are indecendent of tne ny-
potnesis leads t23
- ’ "( ;
(r-rrist o5
~ = ~
i
< - \
‘\2‘25/

As cefore, we zzuld .s*t 35 wel) Zompute
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which is the well known normaelized covariance function whnich
selects the hypothesis which maximizes the correlation coef-
ficient between sk and r.
Because of the computational simplicity of (2-23),
simple covariance has become the workhorse of present day
stereo-compilation equipment. As we will see later, however,
viclations of the assumptions leading to (2-23) are cause for
concern. Normalized covariance is commonly employed in appli-
cations having less demanding requirements ¢n througnput
rate aithougn it is used by the recently developed neterodyne

optical corralator (Balasubramanian 1876). In the following

section, the image matcning problem #5 formulated in a slichtly

different manner and the corresgonding ML processcr is subse-

quently differcnt.

Generalized Correjation

. X . - . .
Since s~ can be obtained from sk 1 simply by & one pixel
snift in subimage position, tne matching problem can be re-

posed as

~~4

RIS = S0+ 0,,5%0,) rect{fd) + N(1,5)  (2-27)

~

wnere . and Dy are the reiative shifts between tne matcn

wincows 2 and tne correct subimage of S, N(i,j) is the signal

-
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dependent noise as before, and

idy s
rectiy.y) (2-28)

0 otherwise
With this formuletion, the ML processor selects the

paramerters Dx and 6y wnich maximize p(R}DX,Dy). As we shall

! see, the ML estimator can be realized as a pair of image pre-
filters followed by a cross-correlation as shown in Figure

‘ 2-3. A variety of "generalized correlation” techniques can

be implemented in tnhis manner with the choice of H] and H2

based on the optimization of certain performance criteria.

{ If oA {usvi = #,(u,v) = 1 ¥ u,v where u and v are the discrete
|
horizaonzal and vartical spatial frequency variables, then the
. estivare Z(,Dj is de*ermined by the cross-covariance function
| g1
. . o N=1 M-
N O ) - - ku, v ,
-:—2\<,{,/ = '.TT - o USR(va)WN NM (2'29/
| ” u=0 v=0
ahers
2T
sy 3w
w\l 2 5 . (2-30)
i

Equation . 2-23) is simpiy the inverse discrete Fourier trans-
forﬁ of the estimated cross-power specirum GSR and the processor
is tne two-dimensicnal analog of (2-23). When S and R are
fiitered, nowever, the cross-power spectrum between the fil-
tered ou%tputs is given by

* ~

GAB(U’V) = H](U,V)H2<U,V)GSR(U,V) (2-3])

and the generalized correlation between S and R is

N p
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SN-1 M-1
- = __]_ - i .’ . . \ !km\,7,V
CAB(ksZ) = NM U;O V;O ,{\U,V}GSP\\J,/)/! NM k2-32)
where
*
';/(U,V) = H](U,V)HZ(U,V) . (2"33}

The ML estimator for Dx and Dy has been derived by Xnapp
and Carter [1976] in the context of determining time delay be-
tween signals received at two spatially separated sensors in
the presence of uncorrelated noise. To avoid the problem of

signal cependent noise encountered previously, Knapp and Carter

compute the pdf p(X'Q) where

R(u,v) FIR(1,3):
Xlu,v) = 2 (2-34)
S(u,v) FiS(i,3)3
and 3 is the power spectral den;ity matrix
Gon(kai) Goelk,2)]
Quk,z2) . (2-35)

Bas (1) Bsgtin)

The assumption is made that the elements of i(k,z) are un-

correiated Gaussian ‘thus statistically independent) random
variables. This assumption requires that M and N in Figure
2-1 are large with respect Dx anac Dy {this is not generaily
the case in stereo-compilation systems;. The result, extended

to two dimension, is given by

ML( v

o= R KU ‘
CAB‘k’°) = - - .ML(u,v;GSR(u,v)dN MM (2-36)

I S
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where
2
l‘.’ R<UsV);
vy (s v) ] > > . (2-37)
JGSR(U V)l []’,’SR(U,V>1 ]
and VSR is the conerence function
i , Gep(u,v)
t SR ORI . (2-38)
- T
‘ /GSS(u,v) GRR\u,/)
Equation (2-36) can be interpreted as a phase estimator
‘ given by
A Geplu,v)
.. RY™?
{ expiis(u,v)] = ——— (2-39)
Gglu,v)!
| multiplied by a weighting function which weights the phase

according to the strength of the coherence. To implement such
a processor, Equations (2-38), (2-37), and (2-36) need to be
computed for eacnh match window location. This procedure is
thus computationally prohibitive for the application at hand.
The correlation methods characterized by Figure 2-3 are
21l generalizations of (2-23). Normalized covariance can also
2e generalized in a similar manner, although the analytic de-
velopment of the optimal processors is, in general, impossible.
Pratt {1574] describes an image pre-processing procedure whicn
simply "whitens" tne images before performing the normalized
covariance operation. A major consideration with any of tnese
generalized techniques is the increase in computational com-
piexity. 7o alleviate the computational load, a number of

ad hoc correiation techniques have been proposed.
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Ad Hoc Correlation Techniques

The techniques described below are included here pri-
marily for compieteness. They are not analyzed further.

L Polarity Correlation. The input waveforms are quantized

to two levels, then correlated as usuai. The method 1s less

reliable than covariance, particularly for small data sets,

l although it is far less demanding computationally.
Minimization of the Sum of Absolute Differences. With
‘ this method, averages are removed as in covariance, then the

absolute values of the differences between the match window
and subimage are summed. Tne position at which the sum is a

{ minimum is considered to be the position of maximum correla-
tion. This method is also inferior to covariance [(Helava 1978]
but is less demanding computationally and can produce useful
results as in the following procedure.

Sequential Similarity Detection. Sequential similarity

detection aigoritnms (SSOA's) are basec on the fact that of
the (L - ™ + 1){K - N + 1) referenc2 positions shown in Fig-
ure 2-1, relatively faw are near the correliation peak (tnis
depencs ¢cn the a-sriori knowiedge concerning the predictec
location) ancg tnerefore only relatively few require high
accuracy calculaticns. fFfurthermore, for a grossiy mismatched
windowing pair it may not be necessary to test all MN daca
pairs oefore rejecting tne supimage as a possidle match

1272

‘Barnea % Silverman .. Thnresnold algorithms are empioyed
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in which an error sequence is generated using the previously
described technique. If the accumulated error exceeds a
threshold (fixed or variable) then that particular search
window is rejected. Those positions which pass the threshold
test are subjected to closer scrutiny, in some cases employing
more reliable correlation algorithms to make final decisions.

Hierarchical Simjjarity Detection. A hierarchical ap-

proach which employs the SSDA technique just described has
been developed by Wong and Hall [1978] in which a sequence of
images is created, eacnh of which is a filtered, subsampled
version of the previous aone. An SSCA is then employed on the
filtered images to locate probable correlation peaks. Higner
resolution images are employed at gach stage to improve cor-
relation reliability in the vicinity of the probable correla-
tion peaks and the process continues until only one peak re-
mains. This method is similar in concept to the multiband
analog correlation technique which separates the image signal
into several (usually two; bands. The smoothed imagery im-

proves tne "pull in" range (due to the broad correiation
function; and the nignh frequency imagery provides the required
correlation resolution [Thompson 1966].

The variety of correlation techniques makes it dgiffi-
cult to develop image quality measures which will reliably

predict correlator performance for all the technigues. Since

some methods are considerably more accurate than otners, we




can only endeavor to tailor the image quality features to tne
particular correlation procedure cnosen. In corder to make

the problem tractable, we will restrict our attention to a
small number of techniques, in particular, covariance (2-23),
normaiized covariance (2-25) or (2-26), and least-squares
(2-21). In the following section, the accuracy of these
correlation schemes is assessed by computer simulation. The
goal of the remaining chapters, then, will be to cevelop image
quality measures which will predict the behaviar of these

models.

Correlation Processor Comparisons

In order to obtain valid comparisons of the image
correlation techniques, it is necessary td have access to
stereo-pair imagery for which the paraliax values associated
with each image point are known precisely, or equivalently,
tne corresponding elevation data is known precisely. It is
also desirable to be able to control the image noise content
as well 3s its spatial spectral characteristics Soth inten-
sity and elevation). In order to obtain the latter capaniiity,
it is necessary to generate purely simulated imagery. While
we have taken this approach in part of the experimental resul:s
to te presented in Chapter 6, the imagery so generated lacks
realism. The disadvantages of real imagery, nowever, ars

that tne required parallax precision is not readily available
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[e%

Knapp ang CZarcter [1%78), extanding a result from Maclonald

and Scnultheiss {1863] s*ate tnat
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where o 'f; is tne pre~-filtar transier funcition of the Zener-
alizad zorrelator zefined in '2-33;.

For tne maxinum likeiinooc processor, .. f> is Iiven

by 1Z-37) ina repeazed nere for the continuous case:
i RN
4(f>= = e 3-27°
DI T 3 2
‘ e ito- )T
Tanititanian C2-Z30 anma Z-270 into W 3-250, wWe niva
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For the conditions of {2-%;, tnis again reduces t:o
; . . 2 2 2 . . .
(3-11) altnouzn, in general 7 > 5. csince =, is the vari-
~ e~ A'IL |4L
ence ¢f tne "minimum variance" estimator Since for hign
signal-to-n2ise retios, tne theoretical accuracy of the co-
variance processcr converges to the Cramer-Rac bound, zhe
Cramer-730 bound iiself is a reasonabie candidate for an
image guality measudre, .
Specifically, we will consider (2-8) as an image
“eature Since Ggg(f) is gensrally unavailanle, we must
Zomnute ;Ss(f} {or Grr(f>> and estimacte Gn(f} S0 that (3-7;
Can 5e J4.&T 1O obtain
Bggifl = Gogify - 6 (F) 7 (3-21)
The gueantity ox can he estimazad using (2-15,. Ixoperiment:i’
resuits see Zhapter 5, snow tnac the Lramer-Rao measure s
a potentially useful pre~processing a.goritnm,  As we 3na
see, nowo/or. Sther features are aitsc useful. In Tne To-
icwing szc¢sion, we consider <ne false acgquisition protar :
33 3 20551316 qua ity measudre Sefore creoczeding, nNows i
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WEe NOte That T no LYY, tnere should be 1itsle, 17 any,
differvn e Lo trso MU Lrocessor civen by {2-26) and
12-277 and ositpie caverisnce Referring to Fiqures 2-%, 2-10,
and 2-11, we s0e tnxt hoth loast-sguares and normalized covar-
iancs result in 2 icwer-mean-sguare 2Yror.  Tnus, coviariance
is gefinitely not = wininum variance estimator. As discussed
in Chaptor 4, tne viclation of local image stationarity is
the primary reascn for this discrepancy.
Correiaticn False Acgquisition
As described in CThapter 1, a false acquisition oaccurs
when *tne peax of the correlation Tunction is associated with
an incorrect lobe {Fizure 1-1¢; For an arbitrary correla-
“icn processzor <077, the probatility that such a peak O0CCurs
at lccazzicn = 0 i3 expressad as
Peyl ) = Proo el o (N 13-32)
ne Tota. false 3.3arm prcohaniliisy, ?T’ depends on the Joint
cdf of tne zorrelator output locations and the statistical
desendencs detwean corrala*or Qutsul 1oc2tions mikes T4 -
2C337212 10 2otain 97 TN oCci0sed Torm 2xZedt under tne Lonli-
tions Of s inplifyin: assumptions whicn will 22 27scuzzias in
Cnanter 2 Altnougn :fa denends on tne oarticulair corrala-
tion 2rcozssLr, tne fo.l%owin 2LServitions are 3oorioriac?

! gvariance Iauatio 2-22.,, least-3s53uarsas
a3t ton: 22200 ar [2-220.) and rnormalized
sovariince ‘Inouaticns [2-2%5 or [2-2550 alil
reduirs Sopatation o9f tne foviriince.
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CHAPTC® 4
THE COVARTANC: FUNISTION

The covariance procasscer dofined Zy Zausation (2
is the most co ran tocnnicus for leocating conjusite
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[Mostafavi and Smitn 1978b}. In generzl, the computation

of P_ involves a 2L + 1-fold integration over tne joint pdf

m
of the correlator tap outputs. for even the smallest values
of L, this is computat.onally psronibitive. Because of the

correlation between tap outputs, the oniy situations that

can be handled analytically occur when the input data con-
sists of eitner very smoctn lowpass signals or wide-bandwictin
signals approaching white noise. In the former case, we can
assume that *he tap outputs are so highly correlated that

the self noise is negiigible and in the latter, we assume

the tap outputs are statistically independent. dernecke
113727 oresents an analysis of multitap correlazor self-
noise for anaiocg signals in wnhnich the tap covariances are
accounted for by performing a least-squares parabolic fit
to the average correlator output in the vicinity of the cor-
relaticn peak. The results obtained will be presented in
the sec=ions to follow. They do not differ substantially,
however, from tne results asscciated with the Cramer-Rac
iower 2ound wWnicn, we recall, is related to local regisira-

tion errar and neglects false acaquisition errars,




Sensor YNoise

Let eacn image be corrupted by additive zero-mean
Gaussian uncorrelated noise. The covariance calicula“ion in

the presence of such nois2 becones

. N
C(k) = z (9] s ?1>\Q]+k + n'l)
=1
fa_qn
. Y V4-4)
TN LT (91 N “1) “ (91+k M n])
i=] 1=1

where ¢ i3 an estimate of the true discrete covariance func-

tion

=
—
=z

> (4_5>

(@]
PN
=
it
"n oo
2

and i and ‘- are statistically independent white noise
sequences. The computational error due to the additive nois:

is given by

: N ;N N
\ ooyt (o - - e
N LA T IE
i=] i=] i=] _
(4-8)
N 1 N N
+ o :.g - - - o - o
PR A TE 2 G S B T 4
i=] i=1 =]
N B N
+ LS. - — T 0= -
T 71 g LI B i
i=1 i=1 i=]
Since tne noiss sequences ire uncorreglaczed and £.=2 (k) = D,

T1ows *“nat
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2 N T S 1., -2
o (k) - T ec\k) = Ly ;J.] 3 - N3 1) N
o
cofe . 1 . V2
R T T L I
. 1 . 2. -
+ AT - - — - T on . -
EEI NN (4-7)
Taking expectations with respect to the noise terms
it is straignhtforward to show that
2 4oy o2 2., 2 1 4. 2
N () = CnL<’« 9 "N (z 91-) )
o
2 1 2 2
(- - —{Z . N5 71
+ A= g1+k N (‘-‘ g-]+k) ) + l i ‘
(4-8)

If we alsc assume stationarity of the input process

as well, expectaticns in (4-7) can also be taken witnh respect

to the process g resulting in

SO RS (4-9)
wWwhere we let

S N T hO I B (4-10;
and

E(: wf-%(:-1,2) =d:§ SRy

Since tne error in (4-9) usually involves 3 Jarge

numger 9T Lerm

it 75 reasonacte {0 assuma tnat tne districu-
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Self MNoise

[f the image input signals consisted solely of +ne
desired signals {(i.e., g. and S: . k) there would still be
statistical fluctuations at the correlator output due to
the random nature of the desired signals. These fluctuations
are known as correlator "self-noise".

Taking expectations in {(31-1),

=
=

- ] : . . \
¢ ! T : Rrs(g k- 1) (4-12)

e
n

i=1 j

where Rrs is the cross-correlation function

- 17
Rrs(k) £ r]S1 ok (4 ]J/
and stationarity is assumed. The cross-correlation between
correlator taps is given by
E(c(kic(e)) = E7(aros., = v oroos. J(oris. - L orss. )
' - B B bl SR I £ SA R S E AR RS EY AR
N N
= - T \
i=1 j=1 AR
1 K N N N
*—= I I I I Elr;s__ . r.s ) (4-14)
NC i1 §=1omelopep ) MR
L 5 T (Elr.s.., r.s )
N 1;1 4;] m:I 1714k T+l

+ E(ri3m+krjsm+d)]
in general, tnhne fourth order moments, in (3-14) cannos
be simplified. However, if we assume that “he error incurred
by estimating tne means in (4-1) is negligible then tne co-

variance finction ¢an be written as




e

e

(k) =
1

vhere r and s are zero-mean secuences. With *nis assump-
tion, only the first term in (4-14) remains.
[f we then emplov the image model

r. = g. + =,
i 9 >

then

-z
LI =y

m
—
O
—
=
~—
O
—
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)y =2

—
[N
HoE 2z

(4-17)

(N - ke (k=) - k-

wnere (k) is the 4ronecker delts function
/!

(k) = 14-13)

— N .

O,otherwise
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Thus the cross-covariance Letween correlator taps is
jiven by
K (k,2) = Elelkicle)) - Ele(xE{ci¢))
N N )
= I T E(9:9.,,.9:7.,
i=1 3= i7i1+k7j7j+k
v 52030 - k-2 )G (k-2) (4-20)
Jn\ 49 -
2,2 2 2 \
Mc ;- 5 - = c
+ ln( N Jg),(k 2) \Lg(k) g(i)

Since g is zero-mean, the fourth order moment in (4-20) can

be simplified if we assume the process generating g is Gaus-

sian. In this case {Wnalen 1971
- {2
E(g1g1+kgjgj+k) - Cg(k)cg\C

+ cg(j+a-1)c (i+k-3)

and (4-20; becomes

, p.971,

)+ Cli-gie fivk-5-2)

g

N N
K {x,¢) = ¢ T {C (i-3)C (i-j+k-2) + C_liv¢-i)C (i+k-])
¢ =1 q=i g g g g
= ‘J_i
< Y] > 2 2 2 1 b \
Lo I3N-Tk-4 JCg(k-c) + W;n(:n-zg),(<—c) (4-22;
re ou o= i . . . ,th .
If X = 2 we obhtain tne variance of tne ¢ tap:
N N
:?fl) = L,y = b (CE(]‘-J’) + 0 {j*e-i)C (i+g-300
< ¢ i=] =) S 9 3
2 ~
IRELSF IR (4-23)

Hote tnas the tast term in [3-23)

D

tan /ariance due to tne additive

is the contripution %2 *the

$2nsor nois=. TAus tne

ad4izive noise and zhe self-noise of the desired signal are

.
|

-

yncorreiatad,

?

f g i3 a wnite process then

3-22) necormes

\
j
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4, . , 2 ? 2

| ’ - - R _ s S - {2 < =0 rq4.2a

KC(K,L> \"g("\k ) VR no< oy 0 A-24)
anc the individual tip variances are iven oy
2, Wil 2,2 2 p )
; = N{:z7 + : R L . 1-25]
TC(C) ( g / q ) \
The contribution of self-nocise to the deqredation of
¢ corretation accuracy is, in general, difficult to determine

due to the correlation between correlator tap outputs civen
by (3-22). As mentioned carlier, Wernecke [1878] present:
' an analysis in which the tap covariances are accountsd for by

performing a leest-sguares parabolic Tit to tne averace

t corra2iator output in the vicinity of the corralation peek.

=
_a

itn tne assuTmptions that:
{1) The correlator taps are centered on the
correct neak location,
(2) Thne variance of the correlation function
curvature is negligibly small, and
(37 The correct correlation lobe is acquifed,
dernecke c¢ancludes that *the parallax error variance 153

givan by

L L
30z 2] KC(MJ)
2 2oL el ra-25
i 41 ’ 2 ‘ 2 ’
(2+) :g(NB yor{LEry{eL+tL;

wnere 3 is dafired in (3-14) and the to:tal number of corre-
tator taps i3 2L-1. Note that assumption (3) above ignores
false acguisitian errars. [f the correlator tdp outouss 3re

statistically ‘naependent then {(d4-25) hecomes

e
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(a-27)

Comparing this result with (4-3) we see that under the above

assumptions,

_ 3 cz(i) \
P, = —m———— 5 5 (4-22
¢ / 4 4 2 / \
{(271) 3g(NB oL (L+1Y(2L+1)L
The fact that :2 in (4-27) is inversely proportional

to L~ is somewhat misleading since the addition of correiator
taps reduces :2 only as long as the additional correlator
taps imcrove tne parabolic curve fitting technigue. For
severely bandlimited signals resulting in broad correla<ion
functions, such a result may be appropriate. However, in the
case of severely bandlimited signals, it is hignly unlikely
that the correlator taps are statistically independent. 7o
avoid tnese problems, one must use {(4-25) and consirain L

to a reasonably smaitl value. The computation of {4-26) on
matcnh window size subssctions 1s cumbersocme due to the cal-
culation of the covariance matrix <C. Fquaticn (d4-26) 1is
thus not well suited to be used as an image quality measurse

or pre-processor algorithm,
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Machine Moise
Figure 4-7 show: a block diagram of the computation
of the covariance function as performed by the AS-113-(

sterco-compiler. Thne computation of Ch is subject to errors
due to truncation or round-off in the limited precision com-
puter. Tne magnitude of the errors incurred depend on the
nunber of 2inary digits (bits) used to represent the input
data, the number of bits used in the arithmetic operationrs
and the type of arithmetic employed. Most present stereo-
compilers employ fixed-point arithmetic with 3 bit precision.

Accuracy in fixed point correlators suffers from the need to

w
(]
jo¥]
—
[49)
ot
—~
D
—_
>
o

1% data in such a way as to avoicd register gver-

—h

3
|

ow 1n +the accumulators. wWith continuing improvements in
microprocessor and minicomputer technology, we will see the
advent 5f 15 o0it stereo-compilers in the very near future,

s2tinc 2cint Drocessors eiiminate the need Tor prascaling

gl
T

and Tmorscve overail system precision at the expense of in-
creased i,3%em compiexity and ¢ost and decreased throushput

-4

ogments in the digital processing of radar and

5, nowever, have led to implemertations of Aashriag

~h
-
<
[*9%)
+

ting point processors wnich are based on the idea tnat*
the e2xponent tencs o grow only in the sositive Zireciior,
particulz2riy near the peak of =ne covariance function.
data formas is5 easily implemented in hardware and nas ner-

formed s3ztisfictoriliy Tppennaim 1372, p.272) ir the razar
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; In this section, an analysis of hoth fixed-n0int and

floating-point covariance processors is presented and z<ores-

sions for the contribution o correlator cutput noisa due tro
finite register lenagths are derived. We will consider tre
“correct” computation to be
N 1 N N
’ AY
= r.s -3 I r. I 5. (4-29)
“k . iTirk N i i+l ' ’
i=] 1] c=1
with tne actuai computed function given by
€, = (2 ris.. +e) - v (et e )(T 5., +e.) + e
K T+ ! N i 2 itk 3 4
(4-30)
wnere e., ¢,, and e, are the resulting accumulator output

is the resuit of division by N and subtraction.

It will be assumed %hat the distributions of e, and €5 are

For fTixed-pcoint aritnmetic, one usually consizorz 1

regzistier to Le a fixed-point fraction. In this way tne ora-

duct 2f two numbers remains a fraction which 7must he <ryn-

cateq or roundec off o remain within tne availasie resiszer
langth 9% 5 oizs.  The sum 9f <wo numbers, nowever, <ces no:
reaquira tryncatian altnhougn it can produce an overfiow conds-
tion, i.z2., the sum 15 no laonger a fraction. 7Tnis cverflow
conctliiaon TMposes 1 Canitraint on tne Jdynamic range ¢f the

correiator o0utput wnizna, in turn, recuires scaling of “hne

input 4353, More szecifically, iF we assume tnat
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the quantization error is additive, the output error due to

quantization has precisely the same form as the output error

due to sensor noise. It follows from (4-9) that
2 .1 2,2, 2 ]
o, = N, oq[ch + aq] (4-37)
q
where cg is the output variance due to input quantization
q
noise having variance 35 For quantization to b bits, it
can be easily shown that [Oppenheim and Schafer 1975]
-2b
2 .2 -
o 7 (4-38)

The factor of N] in (4-37) (when compared to (4-9)) is the

result of division by N] in (4-35). From (4-33), (4-34),

and (4-35) it follows that the error in the partial sum in-
jected by round-off and scaling is given by

c _ ¢

e = —— -
N] N1
A
N Giaey L e M Y15
= I — + .} - {5~ I +— T 8.+ I ¥ I n
i=1 M i Noog=1 Ny g T 4 Ny gy
N N
+ Tomy T8, o+ 3} (4-39)
i=1 i=1
where 3 is the error incurred with division by Nz. For
round-off errors, Ef{e} = 0. For truncation errors, there

is a bias term since truncation always rounds down when the

numbers to be truncated are positive. We will ignore the

distinction here and consider only round-off errors. Since

{z}, {2}, {n}, and i5; are statistically independent and,

we assume, uncorrelated with {s} and ir}, it follows that




87
2y _ 2
E(e)-oe
Ny 5,2 Ny )2 L Ny r. Ny 2
= E(r o) +E(z 3 + —(E(z = I 35.)
i=1 M j=1 NE iy Ny gy T
2
s, M 2 NS N A T )
+E(ZN—-Zn1.)+E(E nizsi25])1+E(s)
i=1 71 i=1 i=1 i=1 i=1
Ny o Ny
] 2 2 2 . 1 4 2
= — g% + N.g% + &£ ¢ z I R(i-j) + =5 o + ¢
T L L B A IR N2 e e
2 2
(4-40)
where R(n) = Rs(n) = Rr(") = Rg(n) + cﬁs(n). Since
2 4 . .
g 77 Tq » (4-40) is approximated by
Ny Ny
OZEUZIN s ey 4 2 (N,g° + ¢ T OR_(i-3))(4-41)
e q] N1 N72- 1%n 1=]j'] g
Furthermore, %— << N] and since j% N]cg < 1 for reasonable
1 N
2

choices of N] and N2 it follows that

2 - ..
g = 02[N1 + 1 + i% z I R _(i-3)1 ) (4-42)

: - : o g
N2 i=1 j=1

Since Rg(n) < Rg(O) it is easily shown that

N, N] N2
Loz R(i9) <2 (8 e o)) (4-43)
N2 i=1 j=1 N2
where Mg = E{gr. It is usually the case that N2 > N] and

since ug < 1 and zs < 1 it follows that the error variance
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associated with partial sums is approximately given by
2 . 2
P Jq[N] + 1] . (4-44)

Replacing ék(i) in (4-36) by c(i) + e; and accounting for the

division round-off error, e{, we have

§= Lo (g * &}) ) (4-45)

1 2 2 ( )
e, = — I e. + I e; 4-46
t N2 j=1 ] i=1
Therefore, the round-off error variance, cgo,is
2 _ 1 2 2 -
Oro N2 o + Nzuq (4-47)
S L2 £ 1) + Nyl
2 Sq'™M 2%
g Ny * 1+ 85
: g ) (4-48)
q N,
But N2 = N/N] S0
N3 + N2 + NZ
02 5c2(1 ! ) (4-49)
ro q NN] ’

Clearly, :2 can be minimized by proper selection of

ro

N] although N, and N2 are usually chosen for convenience in

implementation. The AS-11B-X correlator uses N] = 8 and

N2 is adjusted to alter the window size (recall that N =

N1N2)' For large values of N (say N > 64),

2

I

N

W

: 2
ro 8 “q (4-50)
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Note that if N1 = N and N2 = 1, then from (4-49)
0fy = (N +2) o (4-51)

so the scaling of partial sums has reduced the round-off
error by slightly more than a factor of 8 in this case.
This translates to a gain of approximately 1.5 bits of

effective precision.

Flocating Point Processing

Floating-point processing eliminates the need for
data scaling since register overflow conditions can be
detected and handled by the exponent of the floating-point
number. For this reason, we need only consider round-off
errors. To simplify the analysis, each of the two terms in
the covariance function is analyzed separately. First con-

sider the sum of products term
N
¢y = I r.s. . (4-52)

The accumulation of error in the computation of a sum of
products has been analyzed [Oppenheim and Schafer 1975,
p.439] in the context of quantization errors due to finite
register lengths in floating point digital filters. The ap-
proach here is similar although the results developed here
apply specifically to correlation.

With floating-point comphtations the errors are
signal dependent and may be written as

ey T ris.g (4-53)
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where we assume that z is a sample from a distribution uni-
-b -b
form on (-g?— , 17—) where, a2gain, b is the available regis-

ter length. As before, the round-off error variance is given

by (4-38). If we let {Si} be the sequence of partial sums:

£
Sp T LR TS (4-54)
i=1
then
52 = [rzsz(] + €2> + S]](] + ﬂ2) (4'55)

= [FZSZ(] + 52) + r]s](] + g])](] + nz) ’

+

S5 = £r3s3(1 * g,) 521(1 + n3)

+

= Irgs5(1 + £5) + rysy (1 + 6,)(1 + np)

+rys (1 + 200 #0100 + n3)
where {n} 1is the sequence of addition round-off errors which
are also assumed to be zero-mean Gaussian with variance given
by (4-38).

Continuing in the above manner, it can be shown that

s.r.(1 + g.)

1 33 3T i

n~=
na =

_ (W + ;) 5 ny =0 (4-56)
J
From the assumptions on {z} and {n} we can write

N
Sy = T A.r.s. (4-57)

where

(v + ¢.) (4-58)




and we have dismissed with the distinction between
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} and

{n}. The cumulative round-off error, ey is then given by

e T Sy T G
N N
= iil A].r1s1 - 121 r.s
N
= 121 (A1 - 1) r P

Taking expectations in (4-59) w'th respect to round-off

noise, we have
N
E{eN} = £ r.s. E(A
From (4-58), it is seen that
E{(A.} =

(Y +# Efg}) =1

so that

E{eN} =0

The correlation output variance is thus given by

2 2
G = E(eg)
ey N
N N
= E(i:1 r 51(Ai - 1) j:1 szj(Aj - 1))
N N .
= 121 j:1 rirjsisjE{(Ai - 1)(Ai - 1);
Now

and

(4-59)

(4-60)

(4-61)

(4-62)

(4-63)




E(A.A.)

where

—
1}

max(i,]3)

min(i,j)
Therefore

N-L+]
]

N-max(i,j)+1

E(A.A.) (E(1 + s)2

2

(1 + %

shown that if ¢ << 1, then

M

It can easily be

(V + )" =M+ 1

Combining (4-63) to (4-67), we have

N
g z

N
991 j=1

AN - max(i,j) + 1)

Y‘_iT.S]-SJ

2
The value of of
&N

sequences.

expectations over the input processes yields

z E(r.r.s - max(i,j) + 1)

PT35S i+kS jok ) (N

As before,
zero-mean Gaussian processes for which (4-21) applies.

non-zero-mean processes, consider

92

(4-65)

(4-66)

(4-67)

. (4-68)

clearly depends upon the input data

Reintroducing the shift parameter k and taking

(4-69)

the fourth order moment can be simplified for

For
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ECCry + ) (rj + u)(sg+ w)(sps w)) = E(ryrys,s )

where we assume the processes have identical means and the
primed quantities are zero-mean. Since all odd order mo-
ments of zero-mean Gaussian processes are zero [Whalen 1971,

p.%7] it follows that

E(r.r.s s ) = E(ririsss-) + u2 Coli-3) + C (m-n) + €. (i-m)

i j°m™n i737mn
. . oy, 4
+ Cpg(i-n) + € (§-m) + C (§-n) + (4-70)
Combining (4-21), (4-69), and (4-70), we have
NN
2y 2 o2 205 oy 4 o2 s e
o (K} =og T T [C7(1-3) + CL (k) + C (T+k-3)C (3+k-1)
N i=1 j=1
# w8(20(1-5) + 26, (1-3) + € (+k-1) + C_ (i+k-]))
+ " 1 max(i,3) (4-71)

where C(n) = Cr(n) = Cs(n) and max(i,j) replaces N - max(i-j)
+ 1 due to the symmetry of the autocovariance functions and
the fact that all terms depend only on the difference i - j
and not on these individual values.

To complete the analysis of round-off errors in float-

ing-point correlators we need to consider the term

C, = ‘N ey . (4-72)

If the images are quantized to N = 2b

levels, then errors in
each of the summations in (4-72) occur only as a result of
overflow. Thus to develop an expression for the cumulative
error in (4-72) we should consider the probability that such
an overflow will occur with each addition, or equivalently,

the expected total number of overflows that occurs in the
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computation of (4-72). Even if the distributions of r and s
were accurately known, however, the computation of overflow
probability would be cumbersome since the 1ikelihood of an
overflow at a given addition operation depends on whether or
not an overflow occurred during previous additions. To avoid
these complications, we assume that round-off errors occur
with each addition and realize that the result will over-

estimate the error variance. We thus consider

N N
= 1
C2(k) - N 1£1 r1(]+51)1£151+k(]+ﬂ1) (]+e]) (1+e2) (4'73)
where 51 = ny T 0 and e, and e, result from the computation
of the product of sums and division by N respectively. The

accumulated error in (4-73) is given by

N N
eslk) =y -y I L Sink (4-74)
L e yirey | N N N
= 7 (T+eq ) (1+e L ore I os...n. Z s T or.g.
N 1 27 5oy oy Tk Ly Tivk gy i
N N N N
CENE T siany plepregree) Iovy Dosi,
=1 i=1 i=1 7=
(4-75)

The statistical independence of error terms implies

that
oo, (k) = ELe(K)) = (1+o§)25[< k3 jg]risj+knj)
N N N N ?
TR I LA L
1 2 . NN 2
+ E? t(e1+e2+e]ez) E (iil 351 r; sj+k) (4-76)
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Eliminating all terms involving powers of 74

| od

¢

rs

rs

2

q q we have

2 -
E(rirjsm+k) +

= I ot W=
o =Z
I =
S =

) results in

c(i-5) + €(0) + rC_ (mrk-1)) + u?)

1

(C(i-3)C(0) + 2C{m+k-j)C(m+k-1)

z (C(i-j)C{n-m) + Crs(m+k-i)Crs(n+k-j)

E(r.r.s

J

m+kmtk

(nk-1)C  (mek-3 + w2 (c(i-3)+C(m=n) + C g (+k=1)

(n+1-7) + Crs(m+k'j) + Crs(n+k'j)) + oy

4
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greater

) .(4-77)

(4-78)




error terms for purposes of comparison.

sensor noise,

W
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Summary of Correlation Noise Quantities

At this point, it is worthwhile to collect the various
The expression for

self-noise, and machine noise are listed below.

Sensor Noise: From (4-9),
2 = 2 2 2, }
e, (K) 2 N og (2eg + o) (4-79)
Self-Noise: From (4-23), removing the sensor noise,
2 NN
o.(k) 2 £ ¢ (C(i-3) + C_(j+k-i)C_(i+k-j)) (4-80)
¢ i=1 j=1 9 g g
A/D Quantization Noise: From (4-37),
2 .1 2,2, 2 ]
ocq(k) cq (ng + Jq) (4-81)
Fixed-Point Scaling and Round-off Noise: From (4-439),
2 1 2 N? + N% + N2
osro(k) =9 94 ( N] ) . (4-82)

Floating-Point Round-off Noise: From (4-71) and

2 2

3o (k) + o (k)

Ey &s

o NN 5 2 o .

% : § [Co(i-3) + Crs(k) + Crs(‘+k'3)crs(3+k")

+ uB(20(1-5) + 2 ((3-) + C . (j+k-1)
# ¢ (i+k=3)) + uYamax(i,J)

(4-33)
(contd)




s

g7
¢ = oo CE-3)C(0) + 26{mrk-3)C(mek-1)
" ijm
N
2 .. . 4
+u(e(i-3) + C(0) + rC  (m+k-1)) + u
tIIclcz Cli-j)C(m-n) + Crs(m+k-i)Crs(n+k-j)
ijmn
- iy s
+ “rs<"+k 1,Crs(m+k i)
+ ;Z(C(i-j) + C(m-n) + Crs(m+k-i) + crs(n+k—i)
i ) 4
+ Crs(m+k-3; + Crs(”+k’3) + U
(4-83)
witn the assumptions that
- 2
C(n) = Cg(n) + “n £(n)
Crgln) = Coln)
(4-84)
and u = E(r) = E(s) = E(q)

Example

The signal dependence of sg(k) andc2 (k) and the com-

ro
plexity of (4-33) make it difficult to ascertain the relative

magnitudes of the noise terms for arbitrary source auto-
covariance functions. We must also note that the fixed point
errors resulted from the computation of ck/N rather than

C, S0 any comparison must account for this factor by multi-
/

alying :iq\k)and siro(k) by N2. Equivalently we could com-

oute the correlator output SNR given by

2
A(K) = E—é—‘(ﬂ—‘;ll (4-85)
k

o
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where :Z(k) represents any of the noise terms. There is
1

some question as to whether 1 or LZ should be called the out-
] .
sput SNR. The argument in favor of A? is that the correlator

a

output is actually a "power signal". We have selected 2,
however, since it represents the output signal-tc-noise
power ratio, regardiess of the physical units.

For our example, consider

i
C (n) = 02 exp -

2

(=) (4-86)

) —
o>
L1

(-

where . represents the correluation width. Since the noise

and signal processes have been assumed to be Gaussian on
2

the interval (0,1) (see (4-231)), we will let °g * .05,
. = 2 -4 . 2 . . .
g © .5, and “h T 5 x 10 7. This value of og implies that

about 3% of the total area of the Gaussian distribution lies
cutside the unit interval. The input signal-to-noise ratio
is 20aB. We also select N = 64 and N] = 8 since they are
typical values employed by the AS-T1B-X compiler. The
correct peak output SNR's (at k = 0) associated with each
noise source are plotted in Figure 4-2 for the selected
narameters. For this example, it appears that self-noise is
the dominating error source regardless of the correlation
width. This result is misleading, however, because the
nature of self-noise differs significantly from the other
noise sources. The self-noise curve in Figure 4-2 represents
the expected amount of fluctuation in the magnitude of the

neak of cross-covariance function due to the random nature
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of the underlying image formation process within a region of
imagery that is assumed to be characterized, in the statis-
tical sense, by the autocovariance function Cg. The remain-
ing SNR curves, on the other hand, represent the random fluc-

tuation in peak correlation magnitude at a given location

due to the random nature of the noise source. A second fund-

amental difference between self-noise and the other noise

sources is that the self-nocise cross-covariance between taps

increases with A. Figure 4-3 shows the relationship between

the normalized autocovariance function and the normalized

covariances between the center tap and all other taps for

N =16 and ¢ = 1., 5., 10., and 20., assuming the autocovar-

L | jance function of (4-86). For this particular example, the

‘ tap covariances are slightly greater than the input signal
covariances for identical function sample separations, i.e.,

E(CyCp) > E(gy94,) ¥ 2 >0 : (4-87)

These properties of seif-noise make it difficult to

determine the contribution of self-noise to correlation

error production. Since our goal is the development of
usable image quality measures, an experimental approach

' based on the probability of false acquisitions is developed

‘ in the following section. Two image gua]ity features, one

of which ignores the contribution of seif-noise, are devel-

oped using (3-39). The performance of the measufes in a de-

tection scenario will be discussed in Chapter 6.

- w—— - -




101

Ry

I
1
I
!
[
!
}
|
!
|
|
'
[}
1

tatxot o

'

- e e - - - - o W = -

1013010

- e e e - - . e e = o

GO

(4180}

]

|
-

3940 00

1970

e T

- e A e o oa e w.

13150 00

[ee e ) KARE () (4145

& 10
o 10

'

| ix]
|

'

-

! 3]
i

'

[

!

|

I -
H

!

i -
1
SCce 2

L~

0
0
o

R e T S
SS9

193¢0

I [
[§)

tweto

0041
00w
[TV |
00° &y
I AN R
0001
004
ca-
00ty
00y
00,
00y
o0y
00§
(11t
000

001 100°0

00921
00w
00y
00}
[ATURN §
000t
004

00y
00
O 00y

[S13 A1)

001 1900°0

tap

tap

Center/Side Tap Covariance

Figure 4-3,

data autocovariance function
center/side tap covariance

16

N
1
2

-  WRY W O eSS e coa




RS

(o ¥}
(]

- e e W e e - o - - -
b}
-t

o010

- e e e o = e o e A e -

104 104170

[o |
{ ]
[
i
I
t
[ T
[
I
[
i
i
[
I
i
i
004390
]
I
i
i
i
i 7.
B MR
[
L
i
i
i
'
i
'
i

00t §1v/7 ' 0

-—— - - e w e a E w — oe

001

&

o 0051
0 00w
0 0011
0 00t
o 0011
0 0001
S 0 0076
0Q'H
0 00/
0 00"y
0 vorn
0 00y
0 00°f§
o 00°d
0 001
0 000

tap

1500 0013780 0013000

bt

0 o001
0 00°Vv)
O 001
0O e
¢ 00t
0 0001
it e me== - 0 00"A
oo'n
0 00/
0 00"y
O 00
0 00\
O 00
O 00"
O oot
o 000

tap

HILNIR § LA} LA AN 00 100

1ance

ap Covari

-
1

Center/Side

inued).

cont

!
\

c
Figure 4-3




False Acauisition Measures

Equation /3-3%) cefines an image quality reasure

ch

Q = ;—%—@ (4-88)

where :C(k) is the correlator output standard deviation at

tap k cdue tc noicse infecticon of the various types described.
For tne present, we will ignore qguantization noise and machine
noise {simulations nhave been performed using floating point .
arisnmetic with 24 bit precision which, provides an SNR of

over 120 dB3! and consider two expressions for Q based on

sensor ncise only for wnich

1
2
'C'k) = N g (2:2 + ci) (4-89)
and for senscr noise plus self-noise for which
p a2 2. . L 2.
'TC‘\‘(/ = [N Jn(ZZS + :‘n) + o C ('I-J)
X
+ C li+k-3)C (j+k-1)1 (4-90)
39 g
whicn for largce k becomes
1
. s .2 2 - N
okl 2t vn(ng o) o+ QERDD (4-91)
for white noise input, {(4-91) becomes
- 2 2 = 2 = 2
:C(k) = i (39 + :n) = VN g = vNcr {4-92)
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where the model of {3-7) with « = 1 is assumed. Since the
contribution of self-noise to error production is unclear,
and to avoid the computation of the autocovariance function
(which may not be a good statistical representation of cor-
relation behavior when estimated over small data sets), we

introduce the factor » and let

1
Jc<k) = vrf\Tl:chg + 23§c§ + oﬁ]z (4-93)
where
0 < x <1
since
0 < ng < ig'l jg] Cg(i-—j) < Nzog . (4-94)

If 5 = 0, (4-93) reduces to (4-89) and if & = &, (4-93) re-
duces to (4-92). While there are a variety of ways to make
» adaptive (such as computing (4-90) directly) we consider

the expression

_ ]
o= ] o+ XO(W - 1) (4-95)
where
'02 _ 02
r n . 2 2
92 if o > 9,
8 r
Ao -ﬁ (4-96)
0 otherwise

N
This choice of % is motivated by the reasonable assumption

that low variance imagery typically displays a broad
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autocorrelation function whereas high variance imagery tends
to generate narrow autocorrelation functions. Substituting

(4-93) into (4-88) yields

Q - /N_SNR (4-97)

[,\N(SNR)2 + 2SNR + 11]/2

2,2

where SNR = :g/cn is the input sicnal-to-noise ratio. Since

:S must be estimated from r (or s;, we compute

2 c2
s n902>02
2 r n
“n
SNR = (4-98)
0 ; otherwise

Figure 4-4 displ%ys the single tap.false acquisition
probability, PFA’ as a function of Q. The behavior of Q as
a function of SNR and » is shown in Figure 4-5 for N = 21
and 64. Note that the larger fixed values of » (say » > .5)
do not result in reasonable (ur observed) values of PFA' Faor
example, for » = .5, the single tap false acquisition prob-
ability cannot te improved beyond PFA = .1 regardless of the
input SNR and window size. While PFA is only an indication
of the true total false acquisition probability PT (over all
taps), it is necessary that Pr > Pen-

Regardless of how Q is computed, there is a one-to-
one relationship between SNR and PFA' Thus it is reasonable
to consider the alternative quality measure Q] given by

Q1 = SNR (4-99)
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which is also shown in Figure 4.5. If Ji is a known constant
then Q] varies directly with the local image variance.

The use of the quality measures Q and Q] in a threshold de-
tection algorithm will be discussed in Chapter 6. It is
clear, however, that the choice of Q and % alters the pdf of

the quality measure which, in turn, affects the selection of

appropriate threshold levels.

Estimated Mean Square Error

A closed form expression for the estimated mean square
error defined by (4-3) can be derived by extending the result
in (3-36) if we assume that the correlator tap outputs are

statisticaily independent. 1If such is the case, then

2 L X
= -
PZ = nJZL J pCn (y)dy pcz(x)dx (4-100)
- n¢e

where Pe (x) is the correlator output pdf at tap k. Under
k

the assumption of Gaussian pdf's, (4-100) becomes

® L u(x,n,2)
P, = [ ™ ( Gaus(y)dy Gaus(x)dx (4-101)
L J n=- J
- nfz - 00
where
s (2)x + N(C S(Z) - C S(n))
ulx,n,£) = cZ(n) r . (4-102)

Computation of (4-101) generally leads to overestimates of

MSE because the tap covariances are neglected. This can be
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counteracted to some degree by, imposing the constraint that

[Ryan and Hunt 1980]

: P, =1 . (4-103)

The computational compliexity of (4-101), however, makes it

cumbersome to use as an image quality feature.

Input Data Non-Stationarity

Virtually all of the literature on correlation
behavior ignores the effects of non-stationarity of input
data. Each of the expressions derived in the preceding sec-
tions require the assumption of stationarity to express the
expected behavior in terms of ensemble statistical averages
(means, variance, autocorrelations, etc.). To make use of
these results, however, requires estimating the statistical
averages from finite data records which, in turn, requires
that the input data be both stationary and ergodic. Images,
however, are notoriously non-stationary. The local statis-
tics within a windowed image can change drastically as the
window moves from one location to another particularly if
the window passes an edge (a local discontinuity in image
Juminance or amplitude level) between reasonably smooth
regions. Many image processing algorithms (for restoration,
enhancement, etc.) are improved by adapting algorithm para-
meters to local image statistics to account for the non-
stationarity of the image. Improvements in correlation
accuracy can be achieved in a similar manner as the following

discussion implies.
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The assumptions leading to covariance as the ML croc-
essor include the assumption that the variance (or energy)
of the search area subimage does not change appreciably over
the search area. If this assumption is violated due to the
presence of an edge within the search area, the resulting
behavior of the covariance function is, in many cases, pre-
dictable as the following example implies.

Consider the sequence of picture element values shown
in Figure 4-6. We select from this sequence a match window
of lengtnh 5 centered on position 2. This match window is
thus the sequence :4,6,4,5,8}. This window is then corre-
lated with the entire sequence using the covariance function
as a measure of similarity. The resulting correlation func-
tion is shown in Figure 4-7a. The location of the correct
correlation peak is denoted by location G. The peak ac-
tually occurred at Tocation 4 so there is a registration
error of 4 pixels. Figures 4-7b to 4-7j display similar
results for all other match window pesitions selected from
Figure 4-6. A1l match window positions chosen have maximum
cross-covariance corresponding to center positions 6, 7, or
8 in Fiqure 4-6. These points form the transition region
(edge) between two regions in which the statistics change
much more slowly. The only correct correlation results in
this experiment occurred for match window center positions
7 and 8. Since covariance removes the means from the se-
quences, the covariance processor can be thought of as

imoosing stationarity of the mean upon the process. However,
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ne correction is made for non-stationarity of the variance.
Normalized covariance, however, imposes stationarity of the
variance upon the process by normalizing the signal energy
at each position. As seen in Figure (2-7), the error be-
havior appearing in Figure {(2-5) does not occur. HNormalized
covariance is a special case of generalized least-sqguares
given in (2-20) so we expect least squares to behave in a
manner similar to normalized covariance in the vicinity of
an edge. Figures 2-10 and 2-11 indicate that this is, in-
deed, the case.

A close comparison of Figures 2-9 and 2-4b (by using
an overlay) shows that there are regions of considerable
error located along the edges of Figure 2-4b. It is also
clear that positive errors generally lie on one side of an
edge, while necative errors lie on the opposite side. This
behavior is also noted in Figure 4-6. It is thus reasonable
to conclude that at least some of the errors occuring in
Figure 2-9 as a result of covariance processing are due to
the presence of edges which violate the assumption of image
stationarity.

We present here two approaches to the detection of
such regions. Ffor stereo-pair images with negligible relief
distortion, the value of the covariance function at the cor-
rect peak location is an estimate of the energy within the
imaje region under observation. As before, we assume the

distribution of image energy is Gaussian, i.e.,

—
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p . (x) = -1 exp[lix - €(0)) ] . (4-104)

€ VZra (0) 2:5(0)

The presence of an edge-produced region of non-stationarity
results in a large peak covariance value due to the high
local energy (or variance) across the edge. Thus given the
distribution of (4-104), we can select a threshold t such

that

Prob[CO > t] = j pe(x)dx (4-105)
t

is some desired value. Such a detection scheme could be
impiemented either as a preprocessor or as a reliability
measure used during the stereo compilation procedure itself.
Detection of these regions would enable an adaptive processor
to convert to normalized covariance or least-squares corre-
Tation in the region of expected difficulty. The processor
returns to covariance processing when the numerator of the
normalized covariance function or one-half of the first term
in least-squares correlation falis below the selected thresh-
old.

[t is also interesting to consider the conditions
under which covariance produces errors and least-squares
(and presumably normalized covariance) produces correct peak
locations. Suppose the correct hypothesis (using the nota-
tion of Chapter 2) is Hi but that covariance selects Hj'

This condition implies that
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{(covariance): r‘s<J) - r’s<]) > 0 (4-106)
. N [i -
{least squares): 2r‘s(1) - 5(1) 5(1) < 2rs-s{j) - '3 s{j)

(4-107)
where we assume the means have been previously removed.
Equations (4-106) and (4-107) can be combined to yield

. N .. .
G373 o ) (i) 2(r (3 _ o, S(1)) . 0 .(4-108)

This condition simply states that the covariance processor

can select Hj only if the enerqgy of subimage S(J) is gr iter

than the energy of subimage 5(1). It is at least intuitively

reasonable that the quantities
s (1) (4-109)
and

spy Ve LUy (4-110)
are correlated so that as €53 increases, the probability

that 5ij > 0 also increases. If the distribution of °ij

conditioned on = p( ) were known, it would be

Say 5..§g..
13 1] 1]

possible to establish thresholds on i3 which would allow

the detection of image regions for which Prob fgij > 0] ex-
ceeds a maximum acceptable error rate. Such & distribution
could be determined experimentally with sufficient computing
power and a set of "representative" images. A processor

which might be employed in such a detection scheme is shown

in Figure 4-6,
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Since the computation of p{:'¢) may be computationally
prohibitive, a more realistic approach can be developed by

noting that : is related to the gradient of the image energy.

! A simplified pre-processor based on this realization is shown

' in Figure 4-9. In Chapter 6, we present experimental results
to indicate the feasibility of such a procedure. This dis-

' advantage of this approach is that the resulting error map

. indicates only the locations of points corresponding to high
error probabilities and information concerning the error

' magnitude is lost. Such a binary error map could be used to

switch the compilation processor from covariance to a more

reiiable technique, and this may be all that is required.

' The Extension to Two Dimensions

The various correlator output noise variances given
in (4-79) to (4-83) were derived under the assumption of one-
dimensional source sequences and a one-dimensional search.

0f these quantities, only self-noise, (4-80), and floating-

point round-off noise, (4-83), are dependent on the signal
statistics and thus, on the shape of the match window. Since
both of these expressions result from the expansion of the
fourth order moment given in (4-21), the extension to two-
dimensional simply requires the corresponding expression for
the two-dimensional case. Beginning with the 2-D expression
for the covariance function given in {(4-5) and ignoring the

sensor noise, we have
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c(k,?) (4-111)

(13 4
"oy 2z

i1y gy CHaiiek, e

1 N

MN .
i

9
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N

1 gy il gy oy Tivkgee

Assuming, as before, that the error in estimating the mean

is negliigible, we let g be zero-mean. Thus

M N M N
cfaf ?Ve ! = T ht - z .q. .
selodlelmm) = 20 D TG S %k, e%, b0, ben

(4-112)
But the two-dimensional ccunterpart of (4-21) results in

M

"e

C_ (k,2)C_(m,n) (4-113)

E{c(k,2)c{m,n)) g g

1 22
[s TR 3 4

o2

i

+ Cgﬂa-i,b-j)Cg(a+m-i-k,b+n-j-£)

* cg(a+m-i,b+n-j)Cg(i+k-a,j+£-b)

The individual tap variances result from (4-113) and (4-111)

]

when k = m and £ = n for which
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Cg(a-i b-3) (4-114)

+ Cg(a+k-i,b+£-j)Cg(i+k-a,j+£-b)
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CHAPTER 5

RELIEF DISTORTION

In all of the preceding discussion, we have made the
assumption that topographic relief is negligible so that the
two image functions differ only by additive noise terms;
that is, the underlying image functions are identical. The
oresence of topographic relief, however, introduces distor-
tion between the two image functions. The primary effect
of this distortion is a reduction in the peak value of the
cross-correlation function which, in turn, increases the
probability of both local registration and false acquisition
errors. In this chapter, a model of relief distortion is
developed and used to determine the effects of relief dis-
tortion on the covariance function and on the image quality

measures previously discussed.

Relief Distortion Model

Consider the image formation geometry shown in Figure
1-2. The image generation equations were given in fquations

(1-2) and (1-3) and repeated here:

) (5-1a)

a,(xy) = 18 + 2 Ty (5-1b)
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If
.. = x. - - BL (5-2)
2 1 H - e(XOi

where XO is as shown in Figure 1-2, then X1 and X, are con-
jugate points and g](x]) = gz(xz). If there is no terrain
relief, then g](x] + ax) = gz(x2 + tx). In order to deter-

Tine the effect of distortion on the image functions, con-

sider
(x] + ax)(H - e(X])]
g](x] + ax) = 1 3 = I(X]) (5-3a)
and
(x5 * 2x,)(H - e(X,)
5y(x, + x,) = 1{3 P 2 XZZ ° 2] = 1(X,)(5-3b)

wnere X, toixy and Xo * ix, are the images of terrain points

X] and X2 respectively. We wish to determine the value of
“X, SO that X] = X2 = X. After some algebraic manipulation
involving {1-1), (5-2), and (5-3), it follows that
e(X) = e(xo)
o T e U B TR TR - e(X)) (5-4)
0 -
nhere HO = H - e(XO). Letting
0(x) = - , (5-5)
X - XO

we can rewrite (5-4) as

Finally, if we let
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f](_x) = g](x] + x)
and (5-7)
folx) = g,(x, + x) ,
then the model for distortion can be written as
fiolx) = f,(h(x)) (5-8)
where
h(x) = x[] _p - OX ] (5-9)
HO + XOD X C.
and x iz related £ by
x = - elX)) (5-10)

Equation (5-8) expresses the effects of relief distor-
tion in terms of the functional composition [Apostal 1974}

of an image function f, with a distortion function h{(x). Now

2
suppose that C{(x) = m where m is a constant specifying the

terrain slope. Then

, _ b
n(x) = XI:] - H—é—T—X_OITT] . (5-]1)

1t is usually the case that HO >> mX so that
: mB | &
hix) = x|1 - gl T oax . (5-12)
0
This result implies that constant terrain slope produces
spatial contraction or expansion of one image function with
respect to the other. The value of 1 depends on the base-
height ratio, B/HO, and the magnitude of the terrain slope
m, , with distortion increasing with increases in either of

these parameters.




The Effect of Distortion
on Correlation Accuracy

The effect of signal distortion on the cross-correia-

tion accuracy is most casily analyzed in the continucus do-

main. Consider the cross-ccvariance function
0
Z
i
r(z) = . flx + 2)a(x)dx (5-13)
b
2

where D 15 the length of the match window and f and g are
sample functions from stationary, zero-mean fGaussian processes.

if

Yo

(<) = Kf{x - XO)’

then

+ x.jdx = KDC

0’ X

and the expected peak location is the translation between

the functions f and g as desired. If g(x) # Kf(x - x for

o)
fixed but arbitrary K and Xg> then we refer to g as a dis-
torted version of f, assuming, of course, that f and g are
similar and that true points of conjugacy exist.

We now assume the distortion model of (5-3) and let

g(x) = f(h(x)) : (5-15)

sithout loss of generality, let K = 1 and Xg = 0 s> that the
presence of distortion implies h(x) # x. Substituting (5-13)

into (5-13) and taking expectations gives
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0
;
E(r(z)) = | Cf(: + x - hi{x))dx (5-16)
D
2
If u{x) = h{x) - x is a monotonic function of x, then there
exists a function z with z{u) = x such that (5-16) can be
written as
E(r(z)) = J' z7(u) [rect (F=")C(z - u)du (5-17)
where z°(u) = dz/du,
1 for Ixj <1
rect(x) = s
0 otherwise
= .10 D 5
u = Z[h(Z) + h('z)} H (3 ]8)
and
, T Ty
T = D+ h(-§) - h(§)1 . (5-19)

The derivation of (5-17) is presented in Apbéndix B. The
monotonic restriction on u(x) implies that the distortion
consists of spatial compression or spatial expansion but not
both. For aerial imagery taken over reasonably smooth
terrain, the restrictions are minor. [f u(x) is not mono-
tonic, then the resulting ensemble correlation function can
5o cetermineag directly from (5-16). Equation (5-17) is the

convolution




Elr(2)) = }Z‘(U)% rect(<2) * g Cel2) (5-20)

which shows that the effect of relief cdistortion is *o smooth

(R}

the corralation function and reduce its peak value. Guation
.5-20) also implies that the peak of the correlation function
may be biased {U # 0) so that the choice 0f the true correla-
tion peak results in incorrec*® matching of imagery. The

“luctuaticn of U provides a limit on the attainable accuracy
aven if the imagery is noise-free. It is straightforward to

show that under the assumptions ieading to (5-12),

E{u) = 0 (5-21a)
£(u) = ; - %2 o (5-21b)

where
0L I (5-22)

fouztion {5-21b) implies that the registraticn bias fluc-

Ton is proportional to the variation in % (i.e., varia-

f
j
[o¥]
ct

0ility of terrain slope) over the terrain region viewed

through tne natch window. As D increases, the match window

" . . . . . 2 . .

sees” more terrain and it is likely that 5° will also in-
o

crease. Thus while a larger match window provides better

noise suppression, it increases the susceptibility to regi-
stration tias errors.

For arbitrary terrain, the function z(*) in (5-17)
may be impossible to obtain in closed form (it may not be
anigquel. [t is obtainable, however, for *he snecial but use-

fual case in which h(x) is5 given by (5-12). Substituting
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3-12) into (5-23), it follows that
u{x) = (4 - 1)x , {2-23a)
. _ ]
z2(u) = 7 , (5-23b)
-
and

A -

c =) = 4 = — ar+! ._.___....._ * Nneof - (52 \
E(rlz)) = Xe (2) = ooy rectigy—y) = 20elz) - (5-24)

P

235 an example, let the image func*ion f He whize noise so
b=

that Cf(;) = :{:), the Dirac impulse. Then (5-24) becomes
/- _ 1 - :
E{r{3)) = T rect (D ; -_—T) (5-25)

in which the location of the peak is certainly ambiguous,
but most importantly, the peak height is reduced. The re-

duction is most significant for large values of the product

o
$2

- 1. and for imagery containing high spatial frequency
energy resulting in a narrow autocorrelation function. The
distortion characterized by h(x) = ax is analogous to the
dopplier shift which occurs in radar systems when there 1is
relative motion between the target and signal source-receiver
“Skolnik 16627.

The affect of the affine transformation h(x) = ax on
correiator serformance has beén analyzed by Mostafavi and
Smitn [1378a, 1978b]. They alsc consider a more general
arfine transformation which includes a possible rotation be-
tween canjugate regions.

In radar systems the effect of a doppler shift on

the matched filter mismatch is usually considered to be negli-

5ible unless the lengtnhnening or shortening of the signal is
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or the order of the inverse of the signal bandwidth. In

ozher words, the shift (distertion) can be ignored if

[ N, 1
9

where >0 1is the change in signal extent and Bg is the signal
bandwidth. In the present instance, 2D = {1 - 2)D. We will

tnus define the distortion measure as

ne-

d B D1 - a . (5-27)

g

Continuing the analogy between the effects of doppler distor-
tion and relief distortion, we require that
d << 1 (5-28)

In Chapter 6, simulations of the distortion modelled
by h{x) = xzx show that (5-28) also applies in image cross-
correlation applications. The use of (5-27) and (5-28) as a
predetection feature depends on the ability to estimate o
from the stereo-pair without actually performing the stereo
compilation procedure. Although such an estimation procedure
will be considered shortly, it is more practicable to obtain
a space-bandwidth map of the images (i.e., a matrix contain-
ing BgD values corresponding to each image point), then com-
Dute the distortion measure d during the compilation process
#here = (cr more generally h(x)) can be obtained from succes-
sive parallax values. Values of d exceeding a pre-established
threshold indicate reqgions of probable correlator performance
deqradation. Improved conrrelation can te obtained by warping
the appropriate image functions according to (5-15) (effective-

iy forcing « to be equal to 1). An algorithm for the on-line
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spatial warping of image patcness has been described by Panton
{19781. Such an on-line procedure either requires interpola-
tion on previously stored data, or rescanning the image with
updated sampling rates based on the expected terrain slope
at the next match location. Increased throughput rate could
thus be achieved by performing the warping only when required
as specified by the distocrtion measure d.

Webber and Delashmit [1974b] have considered the fil-
tering of imagery *to desensitize the correlation process to
iinear scale-factor distortion described by h{x) = ax. They
conclude that for low SNR and Gaussian autocorrelation func-
tions given by (4-88) that ¢ should be adjusted by filtering

L/

2

so that - = D 2 This desensitization process, however,

-1
-

apoiias on?] to local registration accuracy. Furthermore,
as we have previously stated, low SNR imagery typica]]y‘re-
sults in 5road autocorrelation functions which are already
insensitive to distortion.

As an example of the effect distortion can have on

tne ex«pected correltation function, consider the autocovariance

function used 1n previous examples:

12) : (5-29)

> |y

Cel2) = expi-%(

[

Using (3-14), the bandwidth associated with this auto-

covariance function is given by

Evaluating (5-20) for h(x) = «x leads to
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D, v 3
sl -7
24 . 2 2
2-4 | 1 ‘% av
E(r(s)) = = E —— e
' : i Ve
J
-%%31_];_§ (5-31)
Expressing this result in terms of <he distortion
measure d, we have
£
d-=
5 2
[ 2
E(r[();)l ! 1o "2 g4y (5-32)
/2nd j V2n
-nd—%

Figure 5-1 displays some representative correlation curves

for several values of the parameter d. The effects of prime
jmportance are the reduction in peak height which effects the
false acquisition rate and the alteration in the curvature

of the function at the origin which affects the local regi-
stration accuracy (see 3-19). The reduction in normalized
peak magnitude and the reduction in normalized curvature
magnitude are plotted in Figure 5-2 as a function of d. These
effects nave deen observed experimentally by Casasent and
Psaltis (1976].

The Effect of Distortion
on Error Prediction

In Chapter 3, we saw that the local registration accu-

racy depends on the second moment of the image power spectrum

I S
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Figure 5-1. The Effect of Ristortion on
Cross-Covariance runctions
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kz(d)=corre1ation peak

k{l(d)=corre1ation
curvature

Figure 5-2. Normalized Correlation Peak Height and
Curvature vs. Distortion Measure for
Gaussian Auto-Correlation Functions
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in the manner described by (3-11). From (2-19) and (3-11)
we See that
. NL/2
E(z - )% > - (5-33)
p1dc (2]
o r e
“! d:® 1z =0

Since the curvature of the cross-covariance function decreases
with increased distortion, a correction factor, k], can be

included in (5-33) to obtain

A Ng/2 K
(g - 1)° > f Tr— (5-34)
1§d cg(5)]
e st =0

where k] depends on the form of the autocorrelation function
and the distortion measure d. For the Gaussian autacarrela-

tion function, k1 is obtained from Figure 5-2 and

(nd)?
k, = e ) (5-35)

| —

Squation (5-35) describes the approximate increase in the
Cramer-Rao lower bound due to the presence of distortion.
The increase in local registration MSE is shown in Figure
5-3.

The false acquisition probability as a function of
the guality measurz Q 1s seen in Figure 4-4. The reduction
in correlation peak value effectively reduces the signal-to-
noise ratio at the correlator output. For Gaussian auto-
correlation functions we can obtain a correction factor k2

50 that the adjusted quality measure Q- is given by
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Figure 5-3, Increase in Local MSE Due to Distortion
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Q7 = ka -36)
winere PZ 15 3hown in Figure -2 and j5iven by
~d
, 2
i X
2 ] 2 - \
k,) i — — e dx (3-37}
- bzrd vZT'
3

The resuiting increase in false acquisition probability de-

vends c¢n the magnitude of T as seen in Figure 5-4.

The £ffect of Match Window
Siz2 on Correlation Accuracy

In tne atsence of relief distortion, the correlation
iccuracy 1s expected to improve with increasing window size.

nis behavior is predicted by the Cramer-Rao bound as well

Rt
%)
O

since 7 increases with match window extent. in the
cresence ¢f terrain relief, however, the distortion measure
varies directly with match window size. The result is that
for 4 » 7, %nere is an optimum window size, Nopt’ which will
minimize the correlation error in some sense. The optimum
value of N, however, depends on the criterion to be minimized
and there is no general procedure for selec.ing the "best"

/
\

criterion. Obvious candidate c¢criteria include

[s¥

' the mini-
mization of pFA or (5) the minimization of MSE assuming cor-
rett acquisition. These criteria have been exanined by

“ostafavi ana Smith (1372a, 1378b. assuming a Gaussian auto-

correlation function. They show that the optimum value of
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Figure 5-4. Effect of Distortion on Single Tap
False Acgquisition Probability
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width . and zhe distor-
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N is a function of the ¢

A}

tion d and tha= the cptimum vilue of N under criterion (a}

is sligntly larger {~30%; than under criterion (b;. In
either case NOpt decreases with increasec distortion e&s one
would expect. Mostafavi [1372] has also considered the opti-
mization of window functions for image correlation. These
resdits were ZeriveZ under tne assumption that tne affine

transformation describes the distortion globally, i.e., the

-t

r

ot

ne

wi
o0
O
3

c ¢istortion is independent of window size and shape.

.4
o

stereo-compilation systems, however, the relief distortion
is location dependent and as tne window size increases the

tortion tecomes more complex; for large match windows, the

(&%
vy

distorticn function h(x) = ax may not be valid. Most present
$terzo-comzilers operate with a fixed match window size and
perform spatial warping as described earlier to adjust for
Tocal terrain variaticns. As stated previously, it would be
useful to te able to obtain distortion information prior to
the compilation process. In the following secticn, an image
overlay guality measure is developed by considering the ef-
fect of relief distor<ion on the arithmetic difference be-

tween two reqgistered images.

Est.mation of Relie¥ Distortion

we will assume that within sufficiently small image
regions, that the reiief agistortion is modelled by (3-12).

2

D

peating tne earlier resuls,
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mB 5
X = ' - _f'{i (5'\58)
U]
where HJ =~ - e(Y). The guantities m anc hO can be viewed

as random .ariatles wnicn depend on toe match window joca-

tion Since H »>» (X}, ve will let
Hy = H - Ee(X)) (5-39)
ar< igneorae tne effect ¢f variations in elevation on the
value of ». From (5-28), it fcilows that
2 . B 2. c
(s - 17 ()%t (5-40)
0
de () _
But m{X) = 1%*;l so {£-40) becomes
° |
Ro()|
Ela - 12 () (- S ) (5-41)
0 dt” it = 0

where Re is the elevation profile autocorrelation function.
As we have seen, the difference between the stereo-
sair images is the result of topograpnic relief and noise
sources. Letting g](x]) and gz(xz) represent the underlying
imace intensity profiles, we have seen that if Xy and X, are
91 {xy) = g,(x,) (5-42a)
put
Gilxg L) F go(x, +d) : (5-42b)
New surpose we selact a region of imagery, S] (considerably

Tarser znan match window size), and reqgister S, with the

1
cohar maenber 2f tne sterec-pair. The value of parallax at

stration, -, orovides us with the mean elevation,
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= Z.e{X)), over the selected region and defines & ragion
S~ which is most similar to 51. If the elevation in the

recion s constant, then assuming the registiration is correct,

the difference Setween elements of S] and 52 is given by
< - = / + - Vo
42(X2> S](X]) QZ\XZ) nz(xz) Q1(X]) n](x])
= { A L4
Ny (X, n1(x]) (5-43)
iow cefine
_2_ - ’ \2 -
o4 * E(bz(xz) - S]\x],) (5-44)
where ;g is the cdifference variance. From (5-43),
2 - \ 2 _ 4.2 PR
g 7 t(nz(XZ) ~ n1(x1)) = Z“n . 15-45)
In the presence of topographic relief, however, the overlay
is Jess accurate and :g > 2;5. For the mean elevatiocon cao
the sarallax is given by
B2
= 2= (5.
TR (5-46)

ani tne coordinate transformation that results in correct

relistration is given by

Xo = Ky - g T Xy - : . (5-47)
e
If we now define
n(xl) = Sz(xz)i - S](X]) (5"48)
| = -7
X, Xq-:
o 2 L e 20y . s 2 .
than -4 0= E0n a]),. An expression for "4 that includes the
ravief distortion can be derived by considering the Jeometry
of Fioure 5-5. If at point X in the object soace, e(X) = S
“nen g](x]) = gz(xz). If e(X) # . then as a first order
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the nre-inm
el X) i f

A, then by
Substituti
Thus

where tne

iy

=

-

e

>3

o

()

[s¥]

1490

! . Ay el = o
. <+ -
VX s Ay ELEY

in; aifference in ground position of

simiiar triangles,
B PN -
Ao felk; - o) 1 3-50)
n e
0
rc {5-30) into {5-42) and (5-4%) resul*s in
Lo B vor it ry, {3313
Nigy, = 170G elN) - L) o+ {x,) - no ik, \5-51
1 r e 2 M
0
2 B2 2, ,.2 o s
g = G ) Te(e{A)) - w )T F 2 (5-52)
0
assumptiaon is made that the terrain elevaticn and
flectance processes are independent. Taking the
ns in (5-32), we have
2
. g2, aRp(s)] 2 2
5= () (- ) 2+ 2¢c (5-53)
a H 2 e n
0 dz 17 =0
5 %nhe yariance of the elevation data within the
cCsed Dy o Since the nhotograpn intensity pat-
e image of the ground gattern, it follows that
2 2
.']RI(T d“R (1)
27700) F ey K-—#z—— = KRZ" (1) (5-54)
d~ dt S
z constant which accounts Tor the change in scale
from otjoect no dimage space. Eauations {5-33) and




=
14)
{3-24) can e comopined to yield
2
, . H
2Lyl 2-‘\(~2) 1 (5-53)
S e VS Vn)\ 3 ; RW) 2 o]
E)
g - 4+ ..2 + A ~ + 3
The cuéantity - can be estimated by computing
A2 ] - - s
SR z (So(x,) - Sy{xy)) {(5-56)
d MS S 2 "2 7]
1°72
where M 15 the total numper of elements in $.. If we now
1
zs3ume that the elevation bandwidth, Se, is ¥ncwn and as-
sumed to te constant over the ensemble of images, “hen ‘rom
The moment theorem
2 :
d"R (7}’
e 2. 2.2 . -
- ! = (27) EHE (5-57)
dt fr = 0
Substituting (5-57) and {5-55) into (5-41) resuits in
L2 2.2,.2 2 1 - -
a - ] 2 (27)°37(ct - 2¢ Pa——— 5-58)
E(x - 1% = (29)%:5(c] ) O] (5-58)
g
Tzuation (3-38) regresents an estimate of the fluctuation of
the adistortion parameter u measured cver the terrain region
viewed “nrousgh section S..
: 1
- . , . . ) 2
0 summariza, the procedure for estimating E(x - 1)
is a3 follcws:
(V) Select region S1
(2) Pegis-er Sy with the sther image to
define 3Q and
2 e
(3, “Zomoute tha sanpie difference vari-
. -2
ance ;
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(4) Using eitner S] or S,, compute

d°r (T)! 2 7 2
R“(C’) = - ___3.2_._.» = (ZTT) | oG ('c)df .
d< lt = 0 2 g
(5) compute E(x - 1)2 as in (5-58).

The assumption that Z_ is known is certainly an oversimplifi-

cation since Z is also a random variable that is locazion

cannot be determined without performing the

L
49
11
D
o)
i
(48]
po
ct
s

ticn process. In its place, then, the best we

th >

in (5-58) where the ensemble mean

Ty

= £

can do is na use )
e e

‘er an ensemble of known terrain conditions.

s
v
D
(%2
ot
s
P!
[$1)
t
m
(&8
O

if there are other differences between the

O
ot
(89
jeY)
)
(@]
o
=
Cu
ot

images such as a reflection from an object appearing bright
in an image {due %o aspect angle) and dark in the other image,

~-

the computation in {(3-58) will overestimate the variance of
the distribution of a. In these situations, Eauaticen (5-38)
méy, ncwever, find utility as an cverlay quality measure

since eny factors that reduce the overlay quality are also

expectes Lo degrade the correlation performance. We thus
2 c 2 . -
refar <o S E(x - 1)% computed as in (5-58) as the "effec-

tive" relief distortion.

The Effect of Distortion on £stimated

Mean Square Correlation Error

Assuming that the distribution of &, pl(a), were
known, 1t is5 nossible to adjust (at least theoreticaliy) the

esiimate oF MIE from egquations (4-2) and {(2-100) to (4-102)
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by realizing that the cross-covariance functions Crs in
(4-102) are functions of the parameter . We can Lhus write
7o ; e 5
s (&) x + N(C, (&y2) - C _{n,x))
u{xin,0,) = = L) R (5-59)
Sanh)
c
and compute
x
2 r (g - -
MSE =+ MSE{z;p (z)da (5-60)
J o3
-0
where MSE{x) is computed from (4-3) with
=L ulxn,ta)
P ) = Gaus{y)dy Gaus(x)dx . (5-61)
£ J = J
n=-L
-0 -0
n:

in practice, nowever, it is extemely unlikely that
image data will meet all the requirements leading to (5-61)
(namaly Gaussian, stationary data with uncorrelated correlator
top outputs). However, (5-59) provides a means of adjusting
the guality measure Q shculd the distortion be deemed a poten-
tial source of 4ifficulty. This problem is discussed further
in the following chapter after observing the behavior of cor-

relator nerformance in a simulation of relief distortion.




CHAPTER 6

CORRELATION ERROR PREDICTICN -
EXPERIMENTAL RESULTS

In the previous chapters, an attempt has been made to
develop the theoretical framework on which %o base practical
image pre-processing schemes. In this chapter, we consider
the problem of implementing image processing algorithms
within such a framework. Although the resulting complexity
and throughput rate of the pre-processor are of some concern,
we will postpone discussion of this topic until the behavior
of a variety of processing schemes has been observed. To
simplify the processing, however, we will restrict our at-
tentian to procedures which create "guality maps" based on
only one image of the stereo-pair. This eliminates any
scheme that requires the computation of c¢ross spectra or,
equivalently, cross correlation as, for example, in (3-29).
Instead, we will assume the model of (3-7) with « = 1. The
quality measures developed in previous sections fall into
three categories: (a) those based on local registration
accuracy, f{b) those based on false acquisition probability,
and (c¢) those based on the detection of input data non-
stationarity. In category (a) we will look specifically at
the Cramer-Raoc bound expression {Eguation (3-3}), since it
is independent of the particular correlation algorithm. In

category (b), we will be concerned with the quality measure

144
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: Q in its various forms which depend on the parameter ' in
(4-2%7). Since the measure Q] in (4-99) depends on the signal
t variance which is a measure of local image contras* or tex-
| ture, we will also consider some nonparametric local statis-
tics such as contrast modulation and median 2bsolute devia-
' tion. These guantities will be defined and discussed in de-
tail in a later section. In category [(c) we will confine
‘ the discussion to the variance gradient as discussed in
Chapter 4.
The objective of the experiments in the following
‘ sections i1s to observe fthe behavior of the guality measures
and determine the degree to which the quality measures can
’ be used to detect errcr-pgrone regions of imagery. Before
oproceading, nowever, it is necessary to formuiate a defini-

tion of "errcr-prone” and to establish appropriate detecticn

criteria. To this and, censider the sterec-images A and B

and the two ensembles of "nnise-images" -} and ‘5%, Ve

[s9)
(V2]
(%)
[y
3
D
ct
(v
=
@}
[Vs]
D
—.

mages ar2 statistically independent. We

form 3 noisy stereo-pair A + -, and 8 + - perform the

starco-compilation proces

(2
[99]

nd Jenerate an error map, e],

Sigures 2-9 and 2-11. If this orocedure is then re-
, 1 = 1,...,N we can gJenerate an average

574ar2d4 error map,

. (6-1)
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A

A point aij in 5 can be defined as "“error-prone" if the ‘
associated error point, eij’ is such that eij > tC where tC 1
is some error threshold. This definition is appropriate for ‘
the quality measures which fall into categories {(a) and (b)
above. For categcry (c), however, we note from Figure 2-9
that the covariance processor produces significant errors in '
the absence of addifive noise, presumably due to the presence
cf edges as discussed in Chapter 4. For this particuﬁar case,
an error-nrone point will simply be one that corresponds to
an error value that is greater than tc.
There are a variety of methods for ascertaining the
degres Lo which a particular quality measure "follows" the
error Sehavior. Once an error threshold te has been estab-
lished, the detection criterion reduces to a simple binary
hypothesis tast with hypotneses HO: the point is not error
prone and le the point is error prone. For a particular
measure T, we can thus select a quality threshold ty and
compute the usual detection statistics. Although the de-
cision regions will depend on the particular Q chosen we
will assume for purposes of illustration that the larger Q
i3, the less susceptible the image point should be to correla-
tion error (this is reversed for the Cramer-Rao bound). With
tnis convention we can compute the fraction of hits (H: eij
> t_ and Q « tQ), misses (M: e.. > to and 9 > tQ), false

C

alarms (FA: eij < te and Q «< tQ), and correct rejections

(CR: e., - t, and Q > tQ). Under this convention,
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5+ M =13 and FA + CR = 1. Generation of this datae allows
the construction of ROC (receiver operating characteristic)

curves which are plots of the detection frecuency (P

))s
/ersuys the false alarm frequency (PFA).

[t is also instructive to compute “he nistogrems of
the cuality measures caonditioned an =2acn of tne two hvnotheses.

Since {¢Y is Jdesirable that thesa distrihutions b2 senarated,

@ measure of the degree o0f separaticn is given by

EIQIH Y - EQQIH:

c Y J \ 6‘2
. 2 — 1Al 2 n -
where CQ'Hi = £{Q }Hi) - £ (Q:Hi)' The larger LQ

less sensitive the detector will be to changes in the threshold

is, the

levels tQ in the vicinity of the optimal (say in the Bayes
sensa) *threshold. This is desirable since the choice of
“hresnold level in a real operating pra-processor must be
based on simulation results {and experience) and for a par-
“izular image, is unlikely to be optimal.

we shall proceed by first considering the covariance
crocessor errors produced by edges. We will then restrict
gur attentian to the normalized covariance processcr when
w2 consider the quality measures in categories (a) and (b).

Althou

[Ce]

h the false acauisition quality measures were derived

for the coavariance processor we rec2il that normalized covar-
fance simply forces stationarity on the correlation process.

There is no reason to believe that the error behavior of

covariance and normalized covariance are significantly




T

different under conditions of stationarity. In fact, in
Chapter 2, it was shown that they are equivalent processors
under conditions of staticnarity.

Finally, we will present some simulations designed
t2 assess the correlation behavior in the presence of distor-
tion mcdelled by h{x = xx and tc determine the utility of

-

the distortion measure d discussed in Chapter 5.

Inpu*t-0ata Non-Stationarity

The synthetic imace shown in Figure 2-4b was passed
tarouch the orocescor snown in Figure 4-8. The variance
estimator was implemented by computing the sample variance
within a window having the same dimensions as the match
#indow (7 pixels/line x 3 lines, etc.). Since the similarity
search is along epipolar lines, the aradient operator com-
outes the horizontal gradient only using the operator shown
in Figure 6-1. The number of elements in the gradient
operator is chosen to be the same as the number of pixels/
line in the search window since, for each match window lc-
cation, we wish to detect the presence of any portions of
the search window displaying rapidly changing energy. We 1
assume that the match window is centered in the search

window, 2r more precisely, that the correct subimage is

centered in the search window. This is a reasonable approx-
imation for a tracking correlator since the search is carried

out in a reqgion that is symmetric about the predicted correct
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subimage location. For a non-tracking correlator, the search
wWwindow is usuaily determined by the expected extremes in
elevation. Thus a match window corresponding to an elevation
that is near one of the extremes will result in a correct
subimage which is located near an extreme of the search win-
dow.

The covariance error maps from CZnapter 2 and the corre-
sponding variance horizontal gradient maps are shown in Fig-
ure 6-2 for matca window sizes 7 x 3 and 15 x 3. The dis-
tribdutions of errors for these models is nearly symmetical
about zero. For this reason, the ROC curves in Figure 6-3
were formed by taking the absolute value of the data in
Figure 6-2 and altering the gradient threshold tg for a

1 The distribution sepera-

given errar thresnold te = 1.5,
tion as a function of te is shown in Figure 6-4. The stair-
case appearance results from the fact that the errors in
igure 6-2a are integer-valued so any threshold between n and
n+ 1 will result in the same separation.

The regions detectad by tnree different thresholds
are shown in Figure 6-5 where the statistics are color coded.
The ooint at which the false alarm rate becomes usnacceptable

depends on tne spatial relationship between the hit {(or de*ec-

()

tion) locations and the false alarm locations; false alarms

aspearing in close proximity to hits cain contribute, in this

The saparate R2C curves for positive and negative valued
arrors are not significantly different from Figure 6-3.
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Comparison of Covariance Error Maps with

Horizontal fGradient of Image Yariance (HGY]

(a) EZrror Map - 7 x 3 window, (b)) HGY -

7 x 3 window, (2) Error Map - 15 x 3 window,

(d) HGY - 15 x 3 window f
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The computation of the Cramer-Rao bound expression

;ires the estimation of the tast window power spectrum.

€ the cerrelation search 1S one-dimencsional lernipolar

1%

m

si, CR3 is computed by averaging these quantities gver
Tines of the test window. Since the number o7 data

Tes per iine (7 or 15) is small, the data is firs* mul-

-
™
1
(U

1%

0
3
ot}

poroximation of the Kaiser wincow *s5 smootnh

asiimate [Harris 1373]. Thne faiser window

wl
Tl
a
[
ot
3
a9

win) = ay - a, CCS(FEE) ta, ccs(%:Zn}
P )
;2T _ ..
- a, ccsaN_3 ) +on = 0,1, LN -1 (6-3)
D p

e
a, = 0.40243
gy = 0.49804
= 0.09831
as = 0.00122
“.ootsotae number of pixels per test window line. A1-

Ghootnar windews could certainly be employed, it was

«riotnatocomputition of CRS witnout any windowing led to

ftor windowing the test line, an estimate of the

sprctrum is obtained hy computing ther periodoqgram

cractaoand Scnafer 1275]. Since this procedure provides
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| ar estimate of Gr(f) instead of Gq(f), we Torm the estimate
% "/Gr(f) S lrs r) s
6,(F) 2 (6-4)
i to otherwise
| [f it should happen that G_(f) = 0 for all samplcs over the
3
' pericdagram, then CPB 1s set to an arbitrary lirce vélue.
' when computin: the lCramer-Rzo bound on ciean imacery, Gg(f)
can be measured directly and 5~ is based on knowledge of the
‘ associated noisy image statistics.

“rror DOred

iction Performance

5-7 snows R
The cor
The

siven in Figure 6-3.

or tne noise contaminated
resgsectively. Compar

noisy data for
=17

n
o]

which displays
frequency due to the
are hased only on
following observations

(1)

hased on

tha* is

aoar performance

select

a0 measure provides

the 15 x 3

free of noise contamination,

0C curves for the measurements made

respending separation measure is

ROC curves and separation measure

)

case are shown in Figure 6-9 and

isons of measurements made on

ed features are shown 1in

the percent reduction in detec-

presence of noise. Although these
the synthetic images of Figure 2-4,
are noted:

reasonably

detection rates only for measurements

window over 1imagery
The

for the 7 x 3 window case
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is atorihuted o the ooor speciral estimates

records.

octainanls on such small Jata

ls

Since the Cramer-rdec 7veasurs weignts the
iTage oower spectrum by ftr2 scuare of the
frequency, 1t is not surcrizing that 1t is
sensitive to the presenca ¢ white noise.
The 207 curves for the variance and the
false acguisition guality measures, 2, are

cation and

Thi
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S

ise Jover

results from the
is constant w

the one-to-¢ne

assumpti
ith sub-

raiation

thip between SHR and Q specified by Equa-

tion (4-57) These guantities diffzr gqreatly,
nowever, in separation.

The low zenaration for low error threshclds
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]
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e
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v2n

ti9n anp

imaqe statistics

s non-errors and

2-pixe]
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when
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accordingiy.
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4
1

a5 imnroved detect

independ
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in fec
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crease i

ion {i.e.

Jure €-2 and €-190 are due primariiy

ent
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the =i%,/fals2 alarm ratio increases) With
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sensitivizy of the tnreshold settin; to the oresence of
noise. 1f¥ a given feature provides 2 1727 false alarm re-e

wWwith 2 tnreshold setting of e when measuraed cover ciean
imagery, 1% is desirable that the change in threshold re-

-

quired to provide a 10% false alarm rate in the presence of

noise be minimal, or equivalently, we would like the

[

hangs

i

in false alarm rate [or Fit rate) for a given thresnold to
be insiznificant. For tne features which are based on para-

metric stafistics (variance, 3, CRB) the appropriate threshold
?

depends on *he accuracy of the noise power estimate, i

i

Since the estimate of the SNR incorporates the noise power

A

estimate, the false acquisition based measures (Q) adj

[ &
(%]
ct

4. The variancs measure could be likewise adjusted.

e, Table 5-2 presants some of the raw data used

to generate the RJC curves of Figures 6-7b and 6-9b. We
note that for « = 0, 7 provides nearly equivalent hit rates
{AY for tne ziven faazture zhresholds (7). Tnis is not the
case, aowever, for tne acaptive - or the variance. The

variance, ncowever, Can Se adjustec by subtracting the noisa
23, from %ne tnresnold for the noise case to pre-
vide nearly equivalent cetection rates.

The features based on non-parametric statistics (MAD,

C., C., ©,1 cannot te adjusted so simply since “he increase

[
(D
(oW
&
[t
ot

3 the injection ¢f known noise power

> £2 ascartain and 15 test determined zmopiricails.
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Table 5-2. ROC Curve Raw Jata
Q, v =0 Noise Estimate: :? = 253,
T80 5.0 6.0 T E.D 0.0 2.0
H 49 51 70 .83 30 94
Clean
FA 007 016 .029 067 124 200
H .45 .62 .70 .83 .90 .94
Noise
FA .007 .018 .033 .072 .129 .202
%, + = adaptive Noise Estimate: 03 = 265.
7 7.0 1.25 1.3 1.5 2.0
H .72 .83 .85 .90 .57
.12 aAn
Fa .032 .070 .079 . 128 . 300
H .33 .76 .79 .87 .96
Noise
FA .010 .044 .352 .097 .272
Yariance
h 50 100 125 150 2500
- €3 83 .87 30 .94
Ciean
[ 327 .066 097 .130 190
- 75 82 87 .32
B F 042 063 295 16




Relief Distortion Simulations

s performed to observe the

o

A series of experiuients w
behavior of the correlation processors in the presence of
jJeometric distortion described by the distortion function
n{x} = xx where u is defined in (5-12). Table 6-3 shows the
aoproximate value of ':-1' as a function of the effective
base-neight ratio B/HO and the terrain slope m. The simula-
tions were performed for values of x satisfying [x=1] < .2
as follows

(1) A "white” noise sequence is generated

using a random number generator,

(2) A "signal" is produced by filtering the

noise sequence with the low-pass transfer

-f/s

function e where f is the normalized

spatial freguency ('lyquist folding fre-
quency = .53) and s is the "shaning fac-

tor” which controls the spatial frequency

content of the signal; the signal Sand-

wWwidth increases with s.

-~
(@8]

A sample sequence, S, consisting of %S

samrles is tnen selected and stored.
(4) A cenzral por<ion of s is distorted and

resampied using Lagrange intersolation

(Stark 1270, to producs a sequencza r.

\
wn
-~

Ahite Zaussian uncorrelated noise of known
power 15 added {0 each seguence independ-

ently.




Table 6-3. 'z - 1/ as a Function of Base-Height
i and Terrain Slcpe
!
| 5 | 10 .20 30 40 50
wl 08 16 24 .32 40
S 3 06 12 18 24 .30
Hy i
2 o .08 12 16 20
1 52 04 o 03 190
|
.
2 4 .6 3 1.0
m

~1
(82




(6) Tne noisy match sequence, r + . is then
correlated with the nolsy search sequence,
S + n_, “0 generate a correlation function.

(7) Tne ccmputed peak of the correlation function
is compared to ithe correct peak jocaticen ard
the error is retained.

(3) Steps 3-7 are reseated M times and the re-
sults averaged to yield MSE vaiues for each
value of the distortion parameter.

(9) Steps 2-8 are repeated for several shaping

factors and signal-to-noise ratios.

One product of this procedure is 3 two-“dinmenczion:
function which i similar in nature o tne sc¢-calizad 'imni-
guity function” encountered in radar sigral anai/s . Tne

ambiguity function, c(t,2), describes tne bHenavizr 7 =ne

correlazion function as the parameter =+ 15 varia: Fliure
6-12 shows typical mean ambiguity Tunctizn: [i.e., 5tatii-
tical averagss of M = 20 sample functions, for : = 10,3

and 5 = J.31 for an elaven-pixel matcn wingow. ‘igte na:t Tor
s = 12.3, the primary effect of the disiortian narametar i3
the reduction cf the magnitude of the correiasion funcsicn

at the c¢orrect peak iocatior. This effect is negiiziale,
however, for b5road correlation functions {5 = .C1). The

functions in Figure 5-14 were jenerated uLsinag a normalizedq
covariance processar; the resul*s for unnormalizad covariiance

are s3imilar in appearance.




=~

3

I




The mean-zquare correlation errors associated witn

tne ©eviously cescribed nrocedure are shown in

J

- -

and 6-5 for simple covariance and normelized covariance re
spectiveiy. Also given arc the associated distortion nieas

defined by Equation {5-27). <Efach entry in the tadle corre

2

sponds %0 20 repetitions (™ = 20) at an input SNR of 2043.

The SNR is defined in terws of the total energy of the sig
nal genevated in step 2 and not in terms of tne individual

matcn window energies. For this reason, tne true input S¥Y

tends *to incre2ase with shaping factor s. For s > .1, the

errors are primarily due to distortion; for s <« .1 the lcw

(0]

MR oresults ia irncreased error magnitude which s 2ssentia

-h

independent of the distortion. A comparison of tab
and 5-5 1wpiies that simple covariance is siightly more se
sitive to distortion and degrades more rapidly with decrea

SR than loes normalized covariance. This data aise indi-

cates *that one can expect distortion produced errors Tor
values ¢f the distorticn measure 4 exceeding, say, 2.1 T

tne inequality in [53-28) snhould He sa<isfied oy a: leass 3
factor of 13 far this applicatiorn if distortisn is to be

Some, 2ut certainly not all, correlazors in use 1%

tnis tine are capable 07 zorrecting for geometric dis<crci
4p %0 2 t2rratn siope 6F 230ut 507 mo= 1.2). From !3-12°
this i1wcii2s %hat
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CHAPTER 7

SUMMARY AND CONCLUSIONS

The major contribution of this dissertation is the
development and experimental comparison of a number of image
quality measures which, based on the results of Chapter 6,
have exhibited potential for predicting the locations of
“error prone" image data. In the process of developing
these features, it was possible to establish a theoretical
framework for the comparison of covariance, least squares,
and normalized covariance as maximum likelihood processors
(Chapter 2). Observations regarding the accuracy of these
processors revealed that the small match window size and
image non-stationarity violate the assumptions leading to
expressions for theoretical correlator accuracy (Chapter 3)
with the result that the performance, in terms of MSE, of
the covariance processor is far worse than is predicted
theoretically. Methods for detecting covariance errors
assocjated with image non-stationarity have been considered
and have met with limited success. The covariance function
has been analyzed in detail to determine the relative cor-
relation output signal-to-noise ratios associated with sev-
eral noise sources (Chapter 4). This information was re-
quired in order to specify the parameters associated with the
false acquisition measure Q. Finally, the effects of image

distortion have been considered (Chapter 5) and we nave

182




163
concluded that the prediction of distortion related errors
is best accomplished "on-1ine", i.e., as the correlation
process is underway, although needed signal bandwidth infor-
mation could te provided in a pre-processing mode.

In this chapter, we provide a brief summary of the
more important results and indicate, where applicable, the
implications regarding the physical implementation of the
various processing schemes. In Chapter 1, we alluded to the
possibility of enhancing imagery to make it less susceptible
to error producing mechanisms. We will briefly consider
this topic here and provide some experimental results. Fi-
nally, a few comments concerning the possible directions of

future work in this area will be presented.

Correlation Algorithms

In Chapter 2, we showed that if we assume the simple
image formation model,

r = ag + n (7-1)

r )
then maximum likelihood correlation processors could be de-
rived, the form of which depends on the a-priori assumptions
regarding the parameter a. Covariance, least-squares, and
normalized covariance are the products of this approach. If
the stationarity assumption which leads to covariance as the
ML processor is violated, disastrous error conditions can
occur. If we assume that the conditions (original stereo-

pair, geometry, etc.) under which this behavior was observed

(see Figure 2-5) are not pathological, then the capability
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of switching to a more reliable algorithm in the vicinity

of regions violating stationarity is certainly desirable.

The implementation of such a switching capability was dis-~
cussed ea~lier (Chapter 4). The question arises, however,

as to which alternative algorithm should be selected. Both
Teast-squares and normalized covariance do not require the
statiorarity assumption. Least-squares requires the assump-
tion that a = 1 while normalized covariance requires only

the assumption of the image model which, as discussed ear-
lier, is not entirely valid due to the signal dependence of
the noise. Since these procedures are nearly equivalent in
terms of computational load, it would seem natural to select
normalized covariance. The correlation experiments in Chap-
ter 2, however, seem to indicate that it may be advantageous
to employ least-squares. In order to aEsess the advisea-
bility of using least-squares as opposed to normalized co-
variance, the Monte Carlo correlation experiment was repeated
for least-squares. The resulting overall MSE values for the
15 x 3 window and 20dB additive noise were ,182 for least-
squares and .615 for normalized covariance (measure in units
of pixel spacing). Thus for the images and parameters of
this simulation, Teast-squares is considerably more accurate
than normalized covariance, particularly since the MSE values
include the unavoidable contour-related errors. We note
further that the maximum MSE associated with any image point
was 20.0 for least-squares and 60.0 for normalized covariance.

A close 100k at these error maps reveals that the contour-
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related errors are slightly more pronounced for the least-
squares proceésor which results in the contours being more
"smeared out". The least-squares processor, however, is
less susceptible to errors resulting from low SNR, at least
for the source images employed in this simulation.

Since the ROC curves in Figures 6-7 and 6-9 are based
only on the normalized covariance, the experiment was re-
peated for the least-squares error map. Figure 7-1 compares
the ROC curves for least-squares and normalized covariance
for the variance measure. The improvement in detection capa-
bility for least-squares, as well as the improvement in MSE,
provides a strong argument in favor of least-squares as an
alternative algorithm. If, however, the assumption that
a = 1 is not valid, then it would be necessary to know the
point at which normalized covariance surpasses least-squares
in performance (if, indeed, such a point exists). We have
not pursued this topic further.

The implementation of least-sgquares or normalized
covariance requires only a few simple additions to Figure
4-1 in order to compute the energy of the search window sub-
image. The resulting processor is shown in Figure 7-2 in
which covariance, least-squares, and normalized covariance
are all shown as processor outputs. With such an impiemen-
tation there is a small decrease in throughput rate and only
a slignt increase in complexity. Because least-squares re-

quires only a shift register (multiplication by 2) and a
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Figure 7-1. ROC curves for the Variance Measure
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subtraction circuit, it is the more desireable from a hard-
ware viewpoint. From our observation regarding relative
processor accuracy, it would seem that such a minor increase

in complexity is well worth the investment.

Error Variance

In the analysis of local registration errors, we as-
sumed that the correct correlation lobe is selected, and
furthermore that the image subsections are large enough so
that the Fourier components are uncorrelated. This apgroach
led to the development of the Cramer-Rao bound on the accu-
racy ¢f any unbiased correlation processor. An analysis of
the generalized correlator resulted in a generalized maximum
likelihocd correlator {given by (2-36) and (2-37)) which
achieves the lcwer bound under aforementioned assumptions
plus stationarity. Under conditions of high signal-to-
noise ratio, the covariance processor is nearly equivalent
to this "minimum variance" processor. This equivalence,
nowever, implies that the generalized ML processor will also
be susceptible to edge-produced errors since these edges
typically are associated with regions of hign SNR. Thus,
while the tneory establishes relationships which aid in the
understanding of the correlation process, we nave found that
the violation of assumptions necessitates an empirical ap-
proacn regarding specific prccessar accuracies, at least
for the application at nand where the small size of the

match window is a significant factor. On the other hand,
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when caorrelating large regions of imagery, the statistics
of the match area are usually representative of the statis-
tics of the search area and the presence of small regions
with atypical statistics can be ignored.

The analysis of false acquisition errors led to the
development of the image quality measure Q which depends on
the local image signal-to-noise ratio. The value of § is
related to the single-tap probability of false acquisition.
The overall probability of false-acquisition was fognd to be
impossible, in general, to obtain analytically due to the
non-zero correlator tap cross-covariances. Thus, unlike the
Cramer-Rao bound, the magnitude of Q cannot be directly re-
lated to mean-square-error without extensive simulation.

The form of Q depends on the assumptions made concerning the
degree to which self-noise contributes to error production.
The results of Chapter 6 have shown, however, that the ROC
curve associated with Q is independent of this assumption
(i.e., choice of X\). Furthermore, the low apparent sensi-
tivity of the threshold of the X = 0 version of 3 to noise
contamination makes this feature an attractive candidate.

A comparison of the range of magnitudes of the features

-1
N’

adaptive) are shown in Figure 7-3. The numbers marked on

associated with the three versions of Q (x = 0, A A
the range designation bars indicate the hit rate associated
with the particular value of Q. Since we cannot translate
the single-tap false acquisition probability to overall

false acquisition probability it is difficult to determine
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which model most accurately represents the process. One
advantage of the A = 0 model is that the change in detection
rate, say from .5 to .9, requires a larger percentage change
in threshold (Q) than for the other models. Thus this mea-
sure is least sensitive to errors in the choice of G.

The detection capabilities of the Zramer-Paon bcung
and Q are remarkably similar for the 13 x 3 matcn windcow,
no-noise measurements. This similarity is not 56 surprising
however, when the nature of these measures is considercd.

As stated previously, the Cramer-Rao bound measures the
curvature of the autocorrelation function at the origin {or
peak) whereas Q is directly related to the peak magnitude

of tne autocorrelation function. It is not unreasonascle %o
expect these quantities to be highly correlated with the re-
sulting coupled behavior depicted in Figure 7-34; that is,

as the peak of tne function decreases (cz(C) < c}(O)), the
autocorrelation width increases. Although there are 2xcep-
tions to this behavior, they do not appear %to occur with
sufficient frequency to alter the detection capabilities.
Thus the erratic behavior of the Cramer-Rao measure in the
presence o0f noise makes the use of § all tne more attractive.
Furthermore, since the magnitude of the false acquisition
errors tend to be larger by their very nature (see Figure
1-1) than local registration errors, they are more likely to
produce a “lost" condition in a tracking correlator and,
therefore, a measure whicnh is sensitive to image data re-

sulting in false acquisitions is certainly preferabdle.
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Implementation of Image
Quality Measures

The computation of image features can be performed
digitaily by scanning the film in a manner similar tc the
scanning required by the stereo-compiler. O0Once the subimage
of interest nas been digitized, the features listed in Table
6-1 can be computed in a straightforward manner. The con-
trast measures require the least computaticon since a series
of compare coperations will yield the necessary maximum and
minimum subimage density values. The Cramer-Rao bound re-
quires *ne mcst computation since we must compute either the
pericdogram cr the autoccrrelation function.

Tne limiting form of the Cramer-Rao measure given Dy
(2-22}, however, can be computed optically without digitiz-
ing the source data. This is accomplished by using coherent
illumination and appropriate lenses to create the gpticail
Fcurier transferm. A filter which weights each frequency

domain component %y the radial component of the spatial

pe)
[a¥)

frequency 15 placed in the frequency plane and the resulting
irradiance cistrigbution is sensed, integrated, and recorded.
This energy represents tne second moment of the subimage

Jower spectrum. An aperture whicn provides a pre-transform

A

windowing function can also be provided. A gquick calcula-
tion involving the noise power astimate *hen yields the
Cramer-Ras measure. It should be mentioned that a limiting

facter in any conerent optical computation is the s30-cailed
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"speckle effect"” [Considine 1366] wnich i1s a consequence
of the fact that the impulse response function of the opti-
cal system is complex which allows for destructive inter-
ference which would not occur in an inconerent system. It
is partly because of this effect that incoherent optical
spatial frequency analysis techniques are being develiopecd
{Cole 1980}, [Rhodes 1980].

The variance of a subsection can also be sensed
optically by coherently illuminating the desired subsection,
blocking "dc" in the frequency plane and integrating over
the Fourier irradiance distribution. Given the variance and
the estimated noise power, the quality measure Q can be
easily computed.

The optical measurement of fthe contrast measures is
not so straightforward. Recent advances in non-linear opti-
cal image processing have resulted in feedback systems using
Fabry-Perot interferometers containing phase recording media
[Barzheoiemew anc tee 1380)}. At the time of this writing,
these systems are capable of performing optical image thresn-
0lding and analog to digitai conversion with a resoiution of
about 38 gray-levels [Atkins et al. 1980) whicn dces not

appear to be sufficient for the application at hand.
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Relief Distortion

In Chapter 5, a model was developed wnich describes
the geometric distortion between stereo-pair images as a
function of the terrain topography. The effect of this dis-
tortion on the correlation process was shown to be a reduc-
tion in the peak height of the correlation function with re-
sulting increases in local registration and false-acquisi-
tion errors. This behavior, however, was shown to be inde-
pendent of the statistics of the local image subsection in
a manner described by the distortion measure given in (5-27).
Simulations described in Chapter 5 verified the nature of the
distortion measure. The use of such a measure as an error
predictor is not straightforward however, since the distri-
bution of the linear distortion parameter x is difficult to
obtain without performing the stereo-compilation process.

An attempt at estimating the statistics of a, however, led
to an "image overlay quality” measure given by Equation
(5-58). The utility of such a measure in the prediction of
correlation behavior is, at this point, uncertain.

The most promising approach for dealing with relijef
distortion in a pre-processing mode is to compute & map of
the image signal bandwidth to be combined with terrain slope
information acquired during the correlation processing to
yield an estimate of the distortion measure in locations
where the bandwidth exceeds the constraint specified in
Equation (6-6). Geometric correction could be applied at

these points with well-known procedures.
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Image Enhancement for Correlation

In this section, we present three procedures for
suppressing additive noise which may find an application in
improving correlation accuracy. Since the statistics of an
image are usually non-stationary, both spatially variant and
spatially invariant techniques are considered.

The first approach involves simple low-pass Tiltering
using a spatial averaging filter. The motivation for this
procedure derives from considering the effect of low-pass fil-
tering on the correlator input SNR. Let {x],xz,...,xN} repre-

sent a sequence of samples from a stochastic process and let
X, (7-2)

represent the averaging process. If we assume that the {xi}

each have mean x and variance sz then it follows that

y = Ely} = £{x} = X (7-3)
and
N N
2 gy 12,1 ] s
oy = Eily-y)%) = go, 0 ¥ zo b c.(i,3)  (7-4)

. —s
W
Ca.Ca

where C (1,5) = E (x;-X)(x;-X) is the (i,3)th

i element of the

covariance matrix of {xi}. If {xi} represents samples of un-

correlated noise, then
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If we now let g represent the underlying image data,
then the signal-to-noise ratio of the filtered image,
SNRf, is given by
N N
1 2 1 .
ol + — L c C (i,3) (7-6)
NTe N g 9
- i2]
SNRf T 02
N "1
1 N N
= SNR + — L r C (1,J) (7-7)
NoS i=1 j=1 9
4]

Thus if tne image data is correlated, there can be a net
improvement in SNR {this can also be easily seen by consid-

ering the effect of low-pass filtering in the frequency

domain). The fractional improvement in SNR is given by
SNRf-SNR 1 N N
= Tz (i,3) (7-8)
SHR Nol i1 j=1 9
9 i#]

Equation (7-8) implies that there may exist an
optimum value of N which depends only on the form of

Cg. Thus if

N
. : 2
I + )
5 [Cg(T,N+1) Cg(N+],1,J > 9 (7-9)

we can obtain further improvement in SNR by increasing
the size of the averaging window. It is also possible
that (7-9) can be continued to be satisfied for all N

as N increases without bound. Although it is not shown
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explicity, (7-9) can be used to determine the optimum
shape and orientation (if one exists) of the averaging
filter as well as the total number of points since the
spatial proximity of points in the averaging window will
have a bearing on the values of the elements in Cg. The
geometry of the filter which maximizes the SNR, however,
does not necessarily minimize the correlation MSE, par-
ticularly if the correlation process is carried out along
epipolar lines. For example, a 24-point filter can have
a variety of shapes and orientations (2x12, 12x2, 4x6,
etc.). Smoothing in the direction parallel to epipolar
lines will reduce the false acquisition probability (due to
improved SNR) at the expense of an increase in local regis-
tration errcrs due to the smoothing of the resulting cor-
relation functions. Since local registration errors ténd
to be smaller than false acquisition errors, this effect
may be desirable. Furthermore the reduction in signal
bandwidth produced by such filtering results in reduced
sensitivity to relief distortion. On the other hand,
smootning in the direction perpendicular to the epipolar
lTines will result in improved SNR without drastically
smoothing the correlation functions.

Because of the spatial warping due to relief, how-
ever, points in one image lying along a line perpendicular
to an epipolar line are not necessarily colinear in the

other image. Thus averaging data in the cross-epipolar
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direction can reduce the similarity (correlation coeffi-
cient) between the filtered signals. With these considera-
tions in mind, it is clearly more difficult to specify the
optimum window georietry.

A further Jimitation is5 imposed on the filtering
process by the guantization required for subsequent digital
processing. Low-pass filtering reduces the dynamic range
of the signal whicn decreases <he correlator output signal-
to-quantizaticn noise ratio as well as the signal-to-
machine noise ratio (see Equations (4-81) and (4-82). Thus
excessive filtering can result in inferior correlator be-
naviogr,

An experiment was perforied to observe the effect
of low-pass sgatiaily invariant filtering (using averaging)
on the accuracy of the normalized covariance stereo-
compilation. Table (7-1) dispiays the MSE resulting from
tne correlation process as a function of the geometry of
the averaging window. From these resuits, it is clear that
significant inprovement in MSE {on the order of 70%) can
be achieved by simple low-pass filtering. These results
also imply tnat orientation is, indeed, a significant
factor. Note that bhetter results are obtained by smoothing
primarily in the direction perpendicular to the epipolar
search.

Finally, we note that (7-2) can be generalized

to provide for more arbitrary filtering by aliowing a




of Lines

Number

Table 7-1. Residual MSZ as a Functioning of Ave
dindow Geometry, Unfiltered MSE = .2
17 .309 N
15 320 .223
13 .329 .222 .240
11 .358 .240 .238 .336
9 383 .256 .261 .279 .291}
I
7 .325 .294 .283 .287
5 .420 360 350
3 .481 .426
1 .866 .707l
1 3 5 7 9
Number of Pixeis
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r

weighting sequence 1wi} so that

y = N Z wiXi . (7-10)

The second approach to noise suppression is based
on the common enhancement procedure known as unsharp mask-
ing [Pratt 1978). This procedure consists of subtracting
a blurred versiaon {the "mask") of the original from the
original, and then adding the weighted difference image
back to the original. The process can be described by the
relation [Gray, Hunt, and McCaughey 1979)]

Y = GIX-M(X)1 + «M(X) (7-11)
where X is the original image, M(X) is the mask of the
original, G is an arbitrary gain function which may be
spatially variant, and a2 is a fixed parameter which weignts
the mask image with respect to the difference image. For

the present, we let 2 = 1 and define G by

(7-12)

0 otherwise
where xi is the measured Tocal variance and k 1s an 'adjus*-
ment factor' which adds some flexibility *to the process. 1In
regions dominated by noise, the output image approaches the
mask, whereas in high SNR regions, the output approacn tne
original. A preliminary experiment was performed in which
the maskirg function was simply an averaging filter which

replaces the center pixel of an MxM window with the mean
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value of the window. Pesults are shown in Table 7-2 as a
function of the parameter k for M = 3 and M = 5. As k > =,
this method approaches simple averaging. The results from
the invariant averaging, however imply that improved results
may be achieved by a judicious choice of window geometry.
Compariscn of identical gecmetries between the methods
implies tnat there is no advantage %o unsharp masking.

Finally we consider a procedure known as short
space spectral subtraction which has been recently develop-
ed {(Lim 1380] and has shown considerable promise as a noise
cleaning scheme which is performed prior to the application
of image restoration procedures (e.g., deblurring). This
approacn consists of sectioning the original image into
overlapping blocks (16x16 pixels), windowing the individ-
ual subsections and removing the estimated noise by power
spectr-al subtraction, a procedure wherein only the ampli-
tude 0f the Fourier components are altered according tc
the estirated noise spectrum wnich is weighted by a factor
k similar to Egqua<ion (7-12,. The filtered blocks are
then reassemtled to form the cleaned image. Results are
tadbulated in Table 7-2 for several values of k.

Although all three noise suppression procedures
provide reduction in correlation MSE, the most encouraging
approach, from both computational complexity and resulting
MSE viewpoint, is the simple low-pass filter. Spectral sub-
traction is certainly the most complex in terms of imple-

mentation and does not provige the flexibility available
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with the other methods. As stated previously, further re-
ductions in MSE can probably be obtained by optimizing the
window geometry and filter weights for the low-pass ff]ter—
ing technique. By observing the histograms of the correla-
tion errors before and after the filtering, it can be seen
that, regardless of the technique, there is a trade-off be-
tween false acquisition and local registration errors. In
other words, the filtering reduces the frequency of the
relatively large errors at the expense of a small (< 5%)
reduction in correct acquisitions and an increase in small

error (particularly 1 pixel-errors) frequency.




Table 7-2.

Method

Unsharp Masking

(5x5 mask)

Unsharp Masking

(3x3 mask)

Short Space

Spectial Subtraction
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Residual MSt-Unsharp Masking
and Short Space Spectral Sub- 1
traction Noise Suppression,
Unfiltered MSE = .8659 1
k Residual MSE
1.0 .8909
2.0 .6421
3.0 .6133
3.0 .5928
4.0 .5537
6.0 .5261
1.92 L7410
2.56 7123
3.20 .6987
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Extensions

The experimental results presented nherein are based
on the properties of the synthetic images shown in Figure
2-5. While there is no reason to believe that the results
are not representative of the nature of the correlation pro-
cess and its predictability, there are obvious shortcomings
which would require extensive simulation work to alleviate.
To begin, the accuracy of the correlation processors is de-
pendent on the data acquisition geometry and while we have
included this factor in the form of the base-height ratio
(H%)’ there are trade-offs involved. As an example, we note
from tquation (1-3) that an increase in base-height ratio
results in improved elevation resoiution but from Equation
(5-12) we see that the increase in elevation resolution
comes at the expense of increased distortion which degrades
the correlator performance. It would be interesting to
consider Tnis trade-off in more detail to determine if
optimum conditions can be specified.

The correlator models developed in Chapter 4 pro-
vide information regarding the necessary degree of machine
precision in order to relegate machine noise as a second
order error source. Further simulation work is required to
verify these models for both fixed point and floating point

processing.
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The detection of sources of edge-related errors was
based on the gradient of the variance map. It is clear
from the results that improvement in the detection capabil-
ity will require a look at the form of the individual image
data sequences with respect to the form of the edge itself.
However, it is preferable that such a processor not be re-
quired to use correlation as a similarity measure (due to the
computational load). In Chapter 4, ve presented two approach-
es to the detection of such regions (variance gradient and
and variance outlyer) and it is conceivable that a combina-
tion of these approaches in a pattern recognition mode would
yield an improvement in detection capability.

The use of classical pattern recognition schemes
(Fukunaga 19721, ([Kasdan 1971] in which a variety of fea-
tures are combined in the detection processes has been con-
sidered in the context of correlation prediction [Ryan, Gray,
and Hunt 1980]. In such a procedure, feature values as-
sociated with known correlation behavior (MSE) are input
to a pattern recognition package in a "learning" mode.

The pattern recognition algorithms rank and weight each
feature to maximize the detection statistics over the
known behavior. The weightings can then be used in the
detection mode on data for which the correlation benavior
is to be assessed. Preliminary investigations in this
area using the features developed herein, have indicated
that little, if any, improvement in detection capability

is gained by such a combination, presumabiy because
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all the features are, in effect, measuring the same imaqge

qualities [texture or contrast). Further work in tnis area,
however, is certainly wortnwhile although the acquisition of
multiple features as well as the required software gverhnead

for such 2 recognition capability must be considered.
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APPENDI L A

DERIVATION OF EQUATION (3-36)

We assume that c{0) and c(z) are both Gaussien dis-

tributed with pdf's

_ (xe0e(0))®
] 252(0)
DC(O)(X) = ;E;;Za; e (A1)
and
_ fx-DCf{)}z
2, .
: 206°(2%)
Pe(n)) T T

If we assume that c¢{0) and c(£) are statisticaily

independent, then

Pe(o) (y)dy Pe(z) (x)dx . (A-2)

]

Aith substitution from (A-1) and a change of variables

given by
y = XDELS ,
PR
(A-2) becomes
2
_ (y-bC(0))*°
= va(3)+0C(2) 25°(0)
Problc(z)>c(0)] = | ; — Gaus(v)dv
g /T73(0)

(A-3)
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! Similarly, the substitution

- - DC(O
u= a(0

lTeads directly to (3-36).
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APPENDIX B
DERIVATION OF EQUATION (5-17)

We begin with Equation (5-16):

D
2

E(r(z)) = [ Cole + x - h(x))dx . (B-1)
D
2

If u{x) = h{(x) - x is a monotonic function of x, then

there exists a function z with z(u) = x. With this change
of variables, (B-1) becomes

Since u(x) is monotonic then either du/dx > 0 or

du/dx < 0 for al? xa[-%, %]. But

P - 3> n-d + 3 (8-4)
so that
h(3)-2
Er(2)) = [ dzr(u)ics - wau (8-5)
S
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and if du/dx < 0, then z°(u) < 0 and

0

D)

hZ) - § < (-3
so that, again,
923
E(r(z)) = f 27 (u)|
rid-g

rojo

Flr(z)) = f [z°(u)irect -
| 1o+h(-

-0

from which (5-17) foliows.

0
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(B-7)

(8-8)
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